

Paper ID-AJO11533, Volume1, Issue4, September 2012

Total Dominator Colorings in Graphs

Dr. A. Vijayalekshmi
Associate Professor in Mathematics
S.T. Hindu College, Nagercoil-629 002,
Tamilnadu, India.
Email: vijimath.a@gmail.com

Abstract

A total dominator coloring of graphs with minimum degree at least one is a proper coloring of graphs with the extra property that every vertex in the graph properly dominates a color class. The total dominator chromatic number is denoted by \(\chi_{td}(G) \) and is defined by the minimum number of colors needed in a total dominator coloring of \(G \). In this paper we find \(\chi_{td}(G) \) for some classes of graphs and obtain a general bound. Also we obtain a characterization for lower and upper bound.

Key words and Phrases: Total domination number, chromatic number and total dominator chromatic number.

2000 Mathematics Subject Classification: 05C15, 05C69

1. **Introduction.**

All graphs considered in this paper are finite, undirected graphs and we follow standard definitions of graph theory as found in [3].

Let \(G=(V,E) \) be a graph of order \(p \) with minimum degree at least one. The open neighborhood \(N(v) \) of a vertex \(v \in V(G) \) consists of the set of all vertices adjacent to \(v \). The closed neighborhood of \(v \) is \(N[v]=N(v) \cup \{ v \} \). For a set \(S \subseteq V \), the open neighborhood \(N(S) \) is defined to be \(\bigcup_{v \in S} N(v) \), and the closed neighborhood of \(S \) is \(N[S]=N(S) \cup S \). A subset \(S \) of \(V \) is called a dominating (total dominating) set if every vertex in \(V-S(V) \) is adjacent to some vertex in \(S \). A dominating (total dominating) set is minimal dominating (total dominating) set if no proper subset of
S is a dominating (total dominating) set of G. The domination number \(\gamma \) (total domination number \(\gamma_t \)) is the minimum cardinality taken over all minimal dominating (total dominating) sets of G. A \(\gamma \)-set (\(\gamma_t \)-set) is any minimal dominating (total dominating) set with cardinality \(\gamma \) (\(\gamma_t \)).

A proper coloring of G is an assignment of colors to the vertices of G, such that adjacent vertices have different colors. The smallest number of colors for which there exists a proper coloring of G is called chromatic number of G and is denoted by \(\chi(G) \).

A dominator coloring on graphs is a proper coloring of graphs with the extra property that every vertex in the graph dominates an entire color class. The smallest number of colors for which there exists a dominator coloring of G is called dominator chromatic number of G and is denoted by \(\chi_d(G) \). This concept was introduced by Raluca Gera et al [1].

In this paper we introduce a new concept total dominator coloring in G. Also we \(\chi_{ad}(G) \) for some classes of graphs and a general bound of this new parameter.

2. Main Results.

Section 2.1. In this section we introduce a new concept, total dominator coloring on graphs.

Definition 2.1. A total dominator coloring (td-coloring) on graphs with minimum degree at least one is a proper coloring of graphs with the extra property that every vertex in the graph properly dominates an entire color class. The total dominator chromatic number (td-chromatic number) of G is defined as minimum number of colors needed in a total dominator coloring of G and is denoted by \(\chi_{ad}(G) \). This concept is illustrated by the following example.
In figure (1), G is a bipartite graph, so $\chi(G) = 2$. G has four end vertices u_1, u_2, u_3 and u_4 respectively, we assign color 1 to those vertices. We give the non-repeated colors 2 to 5 to the support vertices u_5, u_6, u_7 and u_8 respectively. The vertices \{u_5, u_6\} and \{u_7, u_8\} properly dominate the vertices u_9 and u_{10} respectively. So we assign color 6 and 7 to the vertices u_9 and u_{10} respectively. Thus each vertex in G properly dominates an entire color class. Thus G has required at most 7 colors for its td-coloring. Thus $td(G) \leq 7$.

Suppose the graph has $td(G) \leq 6$. The pendant vertex u_4 dominates only the vertex u_5. Thus u_5 is a color class. i.e., u_5 has a non-repeated color. Similarly u_6, u_7, u_8 all receive non-repeated colors. These four vertices receive non-repeated colors, say 1 to 4. Then the adjacent vertices u_9 and u_{10} receive two different colors say 5 and 6. Since the two vertices u_5 and u_6 have to dominate a color class, 5 has to be a non-repeated color. Thus, the end vertices require one more color. Hence $td(G) = 7$.

Section 2.2. In this section, we obtain the lower and upper bound for the newly introduced parameter and their characterization. Also we obtain a general bound. The next two theorems give the characterization for lower and upper bounds of td-chromatic number of G.

Theorem 2.2. Let G be a connected graph of order p. Then $\chi_{td}(G) = 2$ if and only if $G \cong K_{m,n}$ for some $m, n \in \mathbb{N}$

Proof. First suppose $\chi_{td}(G) = 2$. Let C_1 and C_2 be the two color classes of G. Let $x \in C_1$. Since x can not dominates C_1, it should dominates C_2. Similarly for any vertex...
y ∈ C₂, y dominates C₁. Thus G is a complete bipartite graph with partition C₁ and C₂. Hence G ≅ Kₘ,ₙ for some m, n ∈ N. The converse is obvious. ■

Theorem 2.3. Let G be a connected graph of order p. Then χ_{td}(G) = p if and only if G ≅ Kₚ, for p ≥ 2.

Proof. Let G be a non-complete graph with δ(G) > 0. We show that χ_{td}(G) < p.

Let u₁, u₂ ∈ E(G). We consider the following two cases. **Case (1).** δ(G) ≥ 2. We allot color 1 to u₁, u₂ and colors 2 to p−1 to the remaining p−2 vertices. This is clearly a td-coloring of G. We note that there will be a problem only if there is a vertex adjacent to u₁ or u₂ and to no other vertex. **Case (2).** δ(G) = 1. Since G is non-complete, p > 2. We consider the following two sub cases. **Subcase (2.1).** G has at least two end vertices. We choose u₁ and u₂ to be two end vertices and proceed as in case (1), to show that χ_{td}(G) < p. **Subcase (2.2).** G has exactly one end vertex u₁ with support u₂. Let u₁ be a vertex adjacent to u₂. Proceeding as before, we show that χ_{td}(G) < p. The converse is obvious. ■

Next we present a td-chromatic number for a disconnected graph with components G₁, G₂, ..., Gₖ, k ≥ 2.

Theorem 2.4. If G is a disconnected graph with non trivial components G₁, G₂, ..., Gₖ, k ≥ 2, then
\[
\max_{1 \leq i \leq k} \chi_{td}(G_i) + 2k - 2 \leq \chi_{td}(G) \leq \sum_{i=1}^{k} \chi_{td}(G_i)
\]
and these bounds are sharp.

Proof. For each i (1 ≤ i ≤ k), the component Gᵢ has color classes Cᵢ₁, Cᵢ₂, ..., Cᵢᵣᵢ. Then
\[
\bigcup_{i=1}^{k} C_{i₁}, C_{i₂}, ..., C_{iᵣᵢ}
\]
is a td-color class of G. Thus, \(\chi_{td}(G) \leq \sum_{i=1}^{k} \chi_{td}(Gᵢ) \).

Next we prove the lower bound. Let Gₛ be a component of G with maximum td-chromatic number. Then \(\chi_{td}(Gₛ) = \max_{1 \leq i \leq k} \chi_{td}(Gᵢ) \). For each i ≠ s, Gᵢ needs at least
two new colors, since each vertex in \(G_i \) properly dominates a color class. This establishes the required result. The lower and upper bound are sharp if \(G \cong mK_2 \).

Remark 2.5. For any graph \(G \), \(\chi_{td}(G) \geq \omega(G) \), where \(\omega(G) \) is the clique number of \(G \).

Remark 2.6. For every positive integer \(k \), there is a \((k + 2)\)-\(td \)-chromatic triangle free graph.

Next, we obtain a bound for \(td \)-chromatic number through the total domination number and chromatic number.

Theorem 2.7. Let \(G \) be any graph with \(\delta(G) \geq 1 \). Then max \{ \(\chi(G) \), \(\gamma(G) \) \} \leq \(\chi_{td}(G) \) \leq \(\chi(G) + \gamma(G) \). Also the bounds are sharp.

Proof. We have \(\chi(G) \leq \chi_{td}(G) \leq \chi(G) \). Therefore, \(\chi(G) \leq \chi_{td}(G) \). Let \(f \) be a minimal \(td \)-coloring of \(G \). For each color class \(C_i (1 \leq i \leq \chi_{td}(G)) \), choose a vertex \(x_i \in C_i \). Let \(S = \{ x_1, x_2, \ldots, x_{\chi_{td}(G)} \} \). Now we have to show that \(S \) is a \(\gamma_t \)-set of \(G \). Let \(y \in G \). Then \(y \) properly dominates a color class say \(C_i (1 \leq i \leq \chi_{td}(G)) \). In particular \(y \) is dominated by a vertex \(x_i \). That is \(y \) dominates its open neighborhood \(N(y) \). Thus every vertex in \(G \) is adjacent to a vertex in \(S \). Hence \(S \) is a \(\gamma_t \)-set of \(G \).

To prove the upper bound, let \(g \) be a proper coloring of \(G \) with \(\chi(G) \)-colors. Now we assign colors \(\chi(G) + 1, \chi(G) + 2, \ldots, \chi(G) + \gamma(G) \) to the vertices of a \(\gamma_t \)-set of \(G \) leaving the other vertices colored as before. This is a \(td \)-coloring of \(G \) since it is still a proper coloring and the total dominating set provides the color class that every vertex properly dominates.

\(G = C_4 \) equality holds for lower bound, and that the upper bound is sharp can be seen for \(P_p \) with \(p = 8 \) and \(p \geq 12 \), \(p \neq 14, 18 \).

Section 2.3. Total dominator coloring in join of two Graphs.

In this section, we prove that the total dominator colorings in join of two graphs are same as its proper coloring as well as its dominator coloring.

Theorem 2.8. For any connected graph \(G = G_1 + G_2 \), \(\chi_{td}(G) = \chi_{td}(G_1) = \chi_{td}(G_2) = \chi(G_1) + \chi(G_2) \).
Proof. Let $G = G_1 + G_2$. We know that $\chi(G) = \chi(G_1) + \chi(G_2)$. Also any proper coloring of G is a td-coloring of G. Thus $\chi_{td}(G) = \chi_{td}(G_1) = \chi(G) = \chi(G_1) + \chi(G_2)$. ■

The following cases are the particular cases of the above theorem.

1. For a wheel graph W_p, $\chi_{td}(W_p) = \begin{cases} 4 & \text{if } p \text{ is even} \\ 3 & \text{if } p \text{ is odd} \end{cases}$

2. If a graph G has a vertex of full degree u, $\chi_{td}(G) = \chi_{td}(G) = \chi(G) = 1 + \chi(G - u)$.

3. If G is a complete k-partite graph $K_{m_1, m_2, \ldots, m_k}$, $\chi_{td}(K_{m_1, m_2, \ldots, m_k}) = \chi(K_{m_1}) + \chi(K_{m_2}) + \ldots + \chi(K_{m_k}) = k$. ■

References
