On New Separation Axioms Via γ-Open Sets* Hariwan Z. Ibrahim

Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq. Email: hariwan_math@yahoo.com

ABSTRACT

In this paper, we introduce two new classes of topological spaces called γ -R₀ and γ -R₁ spaces in terms of the concept of γ -open sets and investigate some of their fundamental properties.

Keywords : γ -open, γ -closure, γ -R₀ spaces and γ -R₁ spaces.

1 INTRODUCTION

THE notion of R₀ topological spaces is introduced by Shanin [4] in 1943. Later, Davis [2] rediscovered it and studied some properties of this weak separation axiom. In the same paper, Davis also introduced the notion of R₁ topological space which are independent of both T₀ and T₁ but strictly weaker than T₂. The notion of γ-open sets was introduced by Ogata [3]. In this paper, we continue the study of the above mentioned classes of topological spaces satisfying these axioms by introducing two more notions in terms of γ-open sets called γ-R₀ and γ-R₁.

2 Preliminaries

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and Y) denotes a topological spaces on which no separation axioms is assumed unless explicitly stated. Let A be a subset of a topological space X. The closure of A is denoted by Cl(A).

Definition 2.1. [3] Let (X, τ) be a topological space. An operation γ on the topology τ is a mapping from τ in to power set P(X) of X such that $V \subseteq \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V.

Definition 2.2. [3] A subset A of a topological spac (X, τ) is called γ -open set if for each $x \in A$ there exists an open set U such that $x \in U$ and $\gamma(U) \subseteq A$. Complements of γ -open sets are called γ -closed.

 $\gamma O(X)$ denotes the collection of all γ -open sets of (X, τ) . Moreover, $\gamma C(X)$ denotes the collection of all γ -closed sets of (X, τ) .

Definition 2.3. [1] A γ -nbd of x \in X is a set U of X which contains a γ -open set V containing x.

Definition 2.4. [3] The intersection of all γ -closed sets containing A is called the γ -closure of A and is denoted by τ_{γ} -Cl(A).

3 γ -R₀ and γ -R₁ spaces

We introduce the following definitions.

Definition 3.1. Let A be a subset of a topological space (X, τ) and γ be an operation on τ . The γ -kernel of A, denoted by

 γ ker(A) is defined to be the set

 $\gamma \ker(A) = \cap \{ U \in \gamma O(X) : A \subseteq U \}.$

Lemma 3.2. Let (X, τ) be a topological space with an operation γ on τ and $x \in X$. Then $y \in \gamma ker(\{x\})$ if and only if $x \in \tau_{\gamma}$ -Cl($\{y\}$).

Proof. Suppose that $y \notin \gamma \text{ker}(\{x\})$. Then there exists a γ -open set V containing x such that $y \notin V$. Therefore, we have $x \notin \tau_{\gamma}$ -Cl($\{y\}$). The proof of the converse case can be done similarly.

Theorem 3.3. Let (X, τ) be a topological space with an operation γ on τ and A be a subset of X. Then, $\gamma \text{ker}(A) = \{x \in X: \tau_{\gamma} - Cl(\{x\}) \cap A \neq \phi\}.$

Proof. Let $x \in \gamma \ker(A)$ and suppose τ_{γ} -Cl({x}) $\cap A = \phi$. Hence $x \notin X \setminus \tau_{\gamma}$ -Cl({x}) which is a γ -open set containing A. This is impossible, since $x \in \gamma \ker(A)$. Consequently, τ_{γ} -Cl({x}) $\cap A \neq \phi$. Next, let $x \in X$ such that τ_{γ} -Cl({x}) $\cap A \neq \phi$ and suppose that $x \notin \gamma \ker(A)$. Then, there exists a γ -open set V containing A and $x \notin V$. Let $y \in \tau_{\gamma}$ -Cl({x}) $\cap A$. Hence, V is a γ -nbd of y which does not contain x. By this contradiction $x \in \gamma \ker(A)$ and the claim. **Theorem 3.4.** The following properties hold for the subsets A,

B of a topological space (X, τ) with an operation γ on τ :

- 1. $A \subseteq \gamma ker(A)$.
- 2. $A \subseteq B$ implies that $\gamma ker(A) \subseteq \gamma ker(B)$.
- 3. If A is γ -open in (X, τ), then A = γ ker(A).
- 4. $\gamma \operatorname{ker}(\gamma \operatorname{ker}(A)) = \gamma \operatorname{ker}(A)$.

Proof. (1), (2) and (3) are immediate consequences of Definition 3.1. To prove (4), first observe that by (1) and (2), we have $\gamma \text{ker}(A) \subseteq \gamma \text{ker}(\gamma \text{ker}(A))$. If $x \notin \gamma \text{ker}(A)$, then there exists $U \in \gamma O(X)$ such that $A \subseteq U$ and $x \notin U$. Hence $\gamma \text{ker}(A) \subseteq U$, and so we have $x \notin \gamma \text{ker}(\gamma \text{ker}(A))$. Thus $\gamma \text{ker}(\gamma \text{ker}(A)) = \gamma \text{ker}(A)$.

Definition 3.5. A topological space (X, τ) with an operation operation γ on τ , is said to be γ -R₀ if U is a γ -open set and $x \in$ U then τ_{γ} -Cl({x}) \subseteq U.

Theorem 3.6. For a topological space (X, τ) with an operation γ operation γ on τ , the following properties are equivalent:

- 1. (X, τ) is γ -R₀.
- 2. For any $F \in \gamma C(X)$, $x \notin F$ implies $F \subseteq U$ and $x \notin U$ for

some $U \in \gamma O(X)$.

- 3. For any $F \in \gamma C(X)$, $x \notin F$ implies $F \cap \tau_{\gamma}$ -Cl({x}) = ϕ .
- 4. For any distinct points x and y of X, either τ_{γ} -Cl({x}) = τ_{γ} -Cl({y}) or τ_{γ} -Cl({x}) $\cap \tau_{\gamma}$ -Cl({y}) = φ .

Proof. (1) \Rightarrow (2). Let $F \in \gamma C(X)$ and $x \notin F$. Then by (1), τ_{γ} -Cl({x}) $\subseteq X \setminus F$. Set $U = X \setminus \tau_{\gamma}$ -Cl({x}), then U is a γ -open set such that $F \subseteq U$ and $x \notin U$.

(2) \Rightarrow (3). Let $F \in \gamma C(X)$ and $x \notin F$. There exists $U \in \gamma O(X)$ such that $F \subseteq U$ and $x \notin U$. Since $U \in \gamma O(X)$, $U \cap \tau_{\gamma}$ -Cl({x}) = ϕ and $F \cap \tau_{\gamma}$ -Cl({x}) = ϕ .

(3) \Rightarrow (4). Suppose that τ_{γ} -Cl({x}) $\neq \tau_{\gamma}$ -Cl({y}) for distinct points x, y \in X. There exists $z \in \tau_{\gamma}$ -Cl({x}) such that $z \notin \tau_{\gamma}$ -Cl({y}) (or $z \in \tau_{\gamma}$ -Cl({y}) such that $z \notin \tau_{\gamma}$ -Cl({x})). There exists V $\in \gamma O(X)$ such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, we have $x \notin \tau_{\gamma}$ -Cl({y}). By (3), we obtain τ_{γ} -Cl({x}) $\cap \tau_{\gamma}$ -Cl({y}) = φ . (4) \Rightarrow (1). let $V \in \gamma O(X)$ and $x \in V$. For each $y \notin V, x \neq y$ and $x \notin$ τ_{γ} -Cl({y}). This shows that τ_{γ} -Cl({x}) $\neq \tau_{\gamma}$ -Cl({y}). By (4), τ_{γ} -Cl({y}) = φ for each $y \in X \setminus V$ and hence τ_{γ} -Cl({x}) $\cap (\bigcup_{y \in X \setminus V} \tau_{\gamma}$ -Cl({y})) = φ . On other hand, since $V \in \gamma O(X)$ and $y \in X \setminus V$, we have τ_{γ} -Cl({y}) $\subseteq X \setminus V$ and hence $X \setminus V = \bigcup_{y \in X \setminus V} \tau_{\gamma}$ -Cl({y}). Therefore, we obtain $(X \setminus V) \cap \tau_{\gamma}$ -Cl({x}) = φ and τ_{γ} -Cl({x}) \subseteq V. This shows that (X, τ) is a γ -Ro space.

Theorem 3.7. For a topological space (X, τ) with an operation γ on τ , the following properties are equivalent:

- 1. (X, τ) is γ -R₀.
- 2. $x \in \tau_{\gamma}$ -Cl({y}) if and only if $y \in \tau_{\gamma}$ -Cl({x}), for any points x and y in X.

Proof. (1) \Rightarrow (2). Assume that X is γ -R₀. Let $x \in \tau_{\gamma}$ -Cl({y}) and V be any γ -open set such that $y \in V$. Now by hypothesis, $x \in V$. Therefore, every γ -open set which contain y contains x. Hence $y \in \tau_{\gamma}$ -Cl({x}).

(2) \Rightarrow (1). Let U be a γ -open set and $x \in U$. If $y \notin U$, then $x \notin \tau_{\gamma}$ -Cl({y}) and hence $y \notin \tau_{\gamma}$ -Cl({x}). This implies that τ_{γ} -Cl({x}) \subseteq U. Hence (X, τ) is γ -R₀.

Theorem 3.8. The following statements are equivalent for any points x and y in a topological space (X, τ) with an operation γ on τ :

1. $\gamma \operatorname{ker}(\{x\}) \neq \gamma \operatorname{ker}(\{y\})$.

2.
$$\tau_{\gamma}$$
-Cl({x}) $\neq \tau_{\gamma}$ -Cl({y}).

Proof. (1) \Rightarrow (2). Suppose that $\gamma \text{ker}(\{x\}) \neq \gamma \text{ker}(\{y\})$, then there exists a point z in X such that $z \in \gamma \text{ker}(\{x\})$ and $z \notin \gamma \text{ker}(\{y\})$. From $z \in \gamma \text{ker}(\{x\})$ it follows that $\{x\} \cap \tau_{\gamma}\text{-Cl}(\{z\}) \neq \phi$ which implies $x \in \tau_{\gamma}\text{-Cl}(\{z\})$. By $z \notin \gamma \text{ker}(\{y\})$, we have $\{y\} \cap \tau_{\gamma}\text{-Cl}(\{z\}) = \phi$. Since $x \in \tau_{\gamma}\text{-Cl}(\{z\})$, $\tau_{\gamma}\text{-Cl}(\{x\}) \subseteq \tau_{\gamma}\text{-Cl}(\{z\})$ and $\{y\} \cap \tau_{\gamma}\text{-Cl}(\{x\}) = \phi$. Therefore, it follows that $\tau_{\gamma}\text{-Cl}(\{x\}) \neq \tau_{\gamma}\text{-Cl}(\{y\})$. Now $\gamma \text{ker}(\{x\}) \neq \gamma \text{ker}(\{y\})$ implies that $\tau_{\gamma}\text{-Cl}(\{x\}) \neq \tau_{\gamma}\text{-Cl}(\{y\})$.

(2) \Rightarrow (1). Suppose that τ_{γ} -Cl({x}) $\neq \tau_{\gamma}$ -Cl({y}). Then there exists a point z in X such that $z \in \tau_{\gamma}$ -Cl({x}) and $z \notin \tau_{\gamma}$ -Cl({y}). Then, there exists a γ -open set containing z and therefore x but not y, namely, $y \notin \gamma \ker(\{x\})$ and thus $\gamma \ker(\{x\}) \neq \gamma \ker(\{y\})$.

Theorem 3.9. Let(X, τ) be a topological space and γ be an operation on τ . Then $\cap \{\tau_{\gamma}$ -Cl({x}) : $x \in X\} = \varphi$ if and only if

$\gamma ker({x}) \neq X$ for every $x \in X$.

Proof. Necessity. Suppose that $\cap \{\tau_{\gamma}-Cl(\{x\}) : x \in X\} = \varphi$. Assume that there is a point y in X such that $\gamma ker(\{y\}) = X$. Let x be any point of X. Then $x \in V$ for every γ -open set V containing y and hence $y \in \tau_{\gamma}-Cl(\{x\})$ for any $x \in X$. This implies that $y \in \cap \{\tau_{\gamma}-Cl(\{x\}) : x \in X\}$. But this is a contradiction.

Sufficiency. Assume that $\gamma \text{ker}(\{x\}) \neq X$ for every $x \in X$. If there exists a point y in X such that $y \in \cap \{\tau_{\gamma}\text{-Cl}(\{x\}) : x \in X\}$, then every γ -open set containing y must contain every point of X. This implies that the space X is the unique γ -open set containing y. Hence $\gamma \text{ker}(\{y\}) = X$ which is a contradiction. Therefore, $\cap \{\tau_{\gamma}\text{-Cl}(\{x\}) : x \in X\} = \varphi$.

Theorem 3.10. A topological space (X, τ) with an operation γ on τ is γ -R₀ if and only if for every x and y in X,

 $\tau_{\gamma}\text{-}Cl(\{x\}) \neq \tau_{\gamma}\text{-}Cl(\{y\}) \text{ implies } \tau_{\gamma}\text{-}Cl(\{x\}) \cap \tau_{\gamma}\text{-}Cl(\{y\}) = \varphi.$

Proof. Necessity. Suppose that (X, τ) is γ -R₀ and τ_{γ} -Cl({x}) \neq τ_{γ} -Cl({y}). Then, there exists $z \in \tau_{\gamma}$ -Cl({x}) such that $z \notin \tau_{\gamma}$ -Cl({y}) (or $z \in \tau_{\gamma}$ -Cl({y}) such that $z \notin \tau_{\gamma}$ -Cl({x})). There exists $V \in \gamma$ O(X) such that $y \notin V$ and $z \in V$, hence $x \in V$. Therefore, we have $x \notin \tau_{\gamma}$ -Cl({y}). Thus $x \in [X \setminus \tau_{\gamma}$ -Cl({y})] $\in \gamma$ O(X), which implies τ_{γ} -Cl({x}) $\subseteq [X \setminus \tau_{\gamma}$ -Cl({y})] and τ_{γ} -Cl({x}) $\cap \tau_{\gamma}$ -Cl({y}) = ϕ .

Sufficiency. Let $V \in \gamma O(X)$ and let $x \in V$. We still show that τ_{γ} -Cl({x}) $\subseteq V$. Let $y \notin V$, that is $y \in X \setminus V$. Then $x \neq y$ and $x \notin \tau_{\gamma}$ -Cl({y}). This shows that τ_{γ} -Cl({x}) $\neq \tau_{\gamma}$ -Cl({y}). By assumption, τ_{γ} -Cl({x}) $\cap \tau_{\gamma}$ -Cl({y}) $= \phi$. Hence $y \notin \tau_{\gamma}$ -Cl({x}) and therefore τ_{γ} -Cl({x}) $\subseteq V$.

Theorem 3.11. A topological space (X, τ) with an operation γ on τ is γ -R₀ if and only if for any points x and y in X, $\gamma \text{ker}(\{x\}) \neq \gamma \text{ker}(\{y\})$ implies $\gamma \text{ker}(\{x\}) \cap \gamma \text{ker}(\{y\}) = \varphi$.

Proof. Suppose that (X, τ) is a γ -R₀ space. Thus by Theorem 3.8, for any points x and y in X if $\gamma \text{ker}(\{x\}) \neq \gamma \text{ker}(\{y\})$ then τ_{γ} -Cl($\{x\}) \neq \tau_{\gamma}$ -Cl($\{y\}$). Now we prove that $\gamma \text{ker}(\{x\}) \cap \gamma \text{ker}(\{y\}) = \phi$. Assume that $z \in \gamma \text{ker}(\{x\}) \cap \gamma \text{ker}(\{y\})$. By $z \in \gamma \text{ker}(\{x\})$ and Lemma 3.2, it follows that $x \in \tau_{\gamma}$ -Cl($\{z\}$). Since $x \in \tau_{\gamma}$ -Cl($\{x\}$), by Theorem 3.6, τ_{γ} -Cl($\{x\}$) = τ_{γ} -Cl($\{z\}$). Similarly, we have τ_{γ} -Cl($\{y\}$) = τ_{γ} -Cl($\{z\}$) = τ_{γ} -Cl($\{x\}$). This is a contradiction. Therefore, we have $\gamma \text{ker}(\{x\}) \cap \gamma \text{ker}(\{y\}) = \phi$.

Conversely, let (X, τ) be a topological space such that for any points x and y in X, $\gamma \ker(\{x\}) \neq \gamma \ker(\{y\})$ implies $\gamma \ker(\{x\}) \cap$ $\gamma \ker(\{y\}) = \phi$. If τ_{γ} -Cl($\{x\}) \neq \tau_{\gamma}$ -Cl($\{y\}$), then by Theorem 3.8, $\gamma \ker(\{x\}) \neq \gamma \ker(\{y\})$. Hence, $\gamma \ker(\{x\}) \cap \gamma \ker(\{y\}) = \phi$ which implies τ_{γ} -Cl($\{x\}) \cap \tau_{\gamma}$ -Cl($\{y\}) = \phi$. Because $z \in \tau_{\gamma}$ -Cl($\{x\})$ implies that $x \in \gamma \ker(\{z\})$ and therefore $\gamma \ker(\{z\}) \cap \gamma \ker(\{z\}) \neq \phi$. By hypothesis, we have $\gamma \ker(\{x\}) = \gamma \ker(\{z\})$. Then $z \in \tau_{\gamma}$ -Cl($\{x\}) \cap$ τ_{γ} -Cl($\{y\}$) implies that $\gamma \ker(\{x\}) = \gamma \ker(\{z\}) = \gamma \ker(\{y\})$. This is a contradiction. Therefore, τ_{γ} -Cl($\{x\}) \cap \tau_{\gamma}$ -Cl($\{y\}) = \phi$ and by Theorem 3.6, (X, τ) is a γ -R₀ space.

Theorem 3.12. For a topological space (X, τ) with an operation operation γ on τ , the following properties are equivalent:

- 1. (X, τ) is a γ -R₀ space.
- 2. For any non-empty set there exists $F \in \gamma C(X)$ such that $A \cap F \neq \phi$ and $F \subseteq G$.

International Journal of Advancements in Research & Technology, Volume 1, Issue1, June-2012 ISSN 2278-7763

- 3. For any $G \in \gamma O(X)$, we have $G = \cup \{F \in \gamma C(X) : \subseteq G\}$.
- 4. For any $F \in \gamma C(X)$, we have $F = \cap \{G \in \gamma O(X) : F \subseteq G\}$.
- 5. For every $x \in X$, τ_{γ} -Cl({x}) $\subseteq \gamma ker({x})$.

Proof. (1) \Rightarrow (2). Let A be a non-empty subset of X and G $\in \gamma O(X)$ such that $A \cap G \neq \phi$. There exists $x \in A \cap G$. Since $x \in G \in \gamma O(X)$, τ_{γ} -Cl({x}) \subseteq G. Set F = τ_{γ} -Cl({x}), then F $\in \gamma C(X)$, F \subseteq G and $A \cap F \neq \phi$.

(2) \Rightarrow (3). Let $G \in \gamma O(X)$, then $G \supseteq \cup \{F \in \gamma C(X): F \subseteq G\}$. Let x be any point of G. There exists $F \in \gamma C(X)$ such that $x \in F$ and F \subseteq G. Therefore, we have $x \in F \subseteq \cup \{F \in \gamma C(X): F \subseteq G\}$ and hence $G = \cup \{F \in \gamma C(X): F \subseteq G\}$.

 $(3) \Rightarrow (4)$. Obvious.

(4) \Rightarrow (5). Let x be any point of X and $y \notin \gamma \text{ker}(\{x\})$. There exists $V \in \gamma O(X)$ such that $x \in V$ and $y \notin V$, hence τ_{γ} -Cl($\{y\}$) $\cap V = \varphi$. By (4), ($\cap \{G \in \gamma O(X): \tau_{\gamma}$ -Cl($\{y\}$) $\subseteq G\}$) $\cap V = \varphi$ and there exists $G \in \gamma O(X)$ such that $x \notin G$ and τ_{γ} -Cl($\{y\}$) $\subseteq G$. Therefore τ_{γ} -Cl($\{x\}$) $\cap G = \varphi$ and $y \notin \tau_{\gamma}$ -Cl($\{x\}$). Consequently, we obtain τ_{γ} -Cl($\{x\}$) $\subseteq \gamma \text{ker}(\{x\})$.

(5) ⇒ (1). Let G ∈ γ O(X) and x ∈G. Let y ∈ γ ker({x}), then x ∈ τ_{γ} -Cl({y}) and y ∈ G. This implies that γ ker({x}) ⊆ G. Therefore, we obtain x ∈ τ_{γ} -Cl({x}) ⊆ γ ker({x}) ⊆ G. This shows that (X, τ) is a γ -R₀ space.

Corollary 3.13. For a topological space (X, τ) with an operation γ on τ , the following properties are equivalent:

1. (X, τ) is a γ -R₀ space.

2. τ_{γ} -Cl({x}) = γ ker({x}) for all $x \in X$.

Proof. (1) \Rightarrow (2). Suppose that (X, τ) is a γ -R₀ space. By Theorem 3.12, τ_{γ} -Cl({x}) $\subseteq \gamma \text{ker}(\{x\})$ for each $x \in X$. Let $y \in \gamma \text{ker}(\{x\})$, then $x \in \tau_{\gamma}$ -Cl({y}) and by Theorem 3.6, τ_{γ} -Cl({x}) = τ_{γ} -Cl({y}). Therefore, $y \in \tau_{\gamma}$ -Cl({x}) and hence $\gamma \text{ker}(\{x\}) \subseteq \tau_{\gamma}$ -Cl({x}). This shows that τ_{γ} -Cl({x}) = $\gamma \text{ker}(\{x\})$.

 $(2) \Rightarrow (1)$. Follows from Theorem 3.12.

Theorem 3.14. For a topological space (X, τ) with an operation γ on τ , the following properties are equivalent:

- 1. (X, τ) is a γ -R₀ space.
- 2. If F is γ -closed, then F = γ ker(F).
- 3. If F is γ -closed and $x \in F$, then $\gamma ker({x}) \subseteq F$.
- 4. If $x \in X$, then $\gamma \operatorname{ker}(\{x\}) \subseteq \tau_{\gamma} \operatorname{Cl}(\{x\})$.

Proof. (1) \Rightarrow (2). Let F be a γ -closed and $x \notin F$. Thus (X\F) is a γ -open set containing x. Since (X, τ) is γ -R₀, τ_{γ} -Cl({x}) \subseteq (X\F). Thus τ_{γ} -Cl({x}) \cap F = φ and by Theorem 3.3, $x \notin \gamma$ ker(F). Therefore γ ker(F) = F.

(2) \Rightarrow (3). In general, $A \subseteq B$ implies $\gamma \text{ker}(A) \subseteq \gamma \text{ker}(B)$. Therefore, it follows from (2), that $\gamma \text{ker}(\{x\}) \subseteq \gamma \text{ker}(F) = F$.

(3) \Rightarrow (4). Since $x \in \tau_{\gamma}$ -Cl({x}) and τ_{γ} -Cl({x}) is γ -closed, by (3), $\gamma \operatorname{ker}({x}) \subseteq \tau_{\gamma}$ -Cl({x}).

(4) \Rightarrow (1). We show the implication by using Theorem 3.7. Let x $\in \tau_{\gamma}$ -Cl({y}). Then by Lemma 3.2, $y \in \gamma \ker(\{x\})$. Since $x \in \tau_{\gamma}$ -Cl({x}) and τ_{γ} -Cl({x}) is γ -closed, by (4), we obtain $y \in \gamma \ker(\{x\}) \subseteq \tau_{\gamma}$ -Cl({x}). Therefore $x \in \tau_{\gamma}$ -Cl({y}) implies $y \in \tau_{\gamma}$ -Cl({x}). The converse is obvious and (X, τ) is γ -R₀.

Definition 3.15. A topological space (X, τ) with an operation γ on τ , is said to be γ -R₁ if for x, y in X with τ_{γ} -Cl({x}) $\neq \tau_{\gamma}$ -Copyright © 2012 SciResPub.

Cl({y}), there exist disjoint γ -open sets U and V such that τ_{γ} -Cl({x}) \subseteq U and τ_{γ} -Cl({y}) \subseteq V.

Theorem 3.16. For a topological space (X, τ) with an operation γ on τ , the following statements are equivalent:

- 1. (X, τ) is γ -R₁.
- 2. If x, y \in X such that τ_{γ} -Cl({x}) $\neq \tau_{\gamma}$ -Cl({y}), then there exist γ -closed sets F1and F2such that $x \in$ F1, $y \notin$ F1, $y \in$ F2, $x \notin$ F2 and X = F1 \cup F2.

Proof. Obvious.

Theorem 3.17. If (X, τ) is γ -R₁, then (X, τ) is γ -R₀.

Proof. Let U be γ -open such that $x \in U$. If $y \notin U$, since $x \notin \tau_{\gamma}$ -Cl({y}), we have τ_{γ} -Cl({x}) $\neq \tau_{\gamma}$ -Cl({y}). So, there exists a γ -open set V such that τ_{γ} -Cl({y}) $\subseteq V$ and $x \notin V$, which implies $y \notin \tau_{\gamma}$ -Cl({x}). Hence τ_{γ} -Cl({x}) $\subseteq U$. Therefore, (X, τ) is γ -R₀.

The converse of the above Theorem need not be ture in general as shown in the following example.

Example 3.18. Consider X = {a, b, c} with the discrete topology on X. Define an operation γ on τ by $\gamma(A) = A$ if $A = \{a, b\}$ or {a, c} or {b, c} and $\gamma(A) = X$ otherwise. Then X is a γ -R₀ space but not a γ -R₁ space.

Corollary 3.19. A topological space (X, τ) with an operation γ on τ is γ -R₁ if and only if for $x, y \in X$, $\gamma \text{ker}(\{x\}) \neq \gamma \text{ker}(\{y\})$, there exist disjoint γ -open sets U and V such that τ_{γ} -Cl($\{x\}$) \subseteq U and τ_{γ} -Cl($\{y\}$) \subseteq V.

Proof. Follows from Theorem 3.8.

Theorem 3.20. A topological space (X, τ) is γ -R₁ if and only if $x \in X \setminus \tau_{\gamma}$ -Cl({y}) implies that x and y have disjoint γ -nbds.

Proof. Necessity. Let $x \in X \setminus \tau_{\gamma}$ -Cl({y}). Then τ_{γ} -Cl({x}) $\neq \tau_{\gamma}$ -Cl({y}), so, x and y have disjoint γ -nbds.

Sufficiency. First, we show that (X, τ) is γ -R₀. Let U be a γ -open set and $x \in U$. Suppose that $y \notin U$. Then, τ_{γ} -Cl({y}) \cap U = ϕ and $x \notin \tau_{\gamma}$ -Cl({y}). There exist γ -open sets U_x and U_y such that $x \in U_x$, $y \in U_y$ and $U_x \cap U_y = \phi$. Hence, τ_{γ} -Cl({x}) $\subseteq \tau_{\gamma}$ -Cl(U_x) and τ_{γ} -Cl({x}) $\cap U_y \subseteq \tau_{\gamma}$ -Cl(U_x) $\cap U_y = \phi$. Therefore, $y \notin \tau_{\gamma}$ -Cl({x}). Consequently, τ_{γ} -Cl({x}) $\subseteq U$ and (X, τ) is γ -R₀. Next, we show that (X, τ) is γ -R₁. Suppose that τ_{γ} -Cl({x}) $\neq \tau_{\gamma}$ -Cl({y}). Then, we can assume that there exists $z \in \tau_{\gamma}$ -Cl({x}) such that $z \notin \tau_{\gamma}$ -Cl({y}). There exist γ -open sets V_z and V_y such that $z \in V_z$, $y \in V_y$

And $V_z \cap V_y = \phi$. Since $z \in \tau_{\gamma}$ -Cl({x}), $x \in V_z$. Since (X, τ) is γ -R₀, we obtain τ_{γ} -Cl({x}) $\subseteq V_z$, τ_{γ} -Cl({y}) $\subseteq V_y$ and $V_z \cap V_y = \phi$. This shows that (X, τ) is γ -R₁.

REFERENCES

- Ahmad, B. and Hussain, S., Properties of γ-operations in Topological Spaces, The Aligarh Bulletin of Mathematics, 22 (1) (2003), 45-51.
- [2] Davis, A. S., Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly, 68 (1961), 886-893.
- [3] Ogata, H., Operation on topological spaces and associated topology, Math. Japonica, 36 (1) (1991), 175-184.
- [4] Shanin, N. A., On separation in topological spaces, Dokl. Akad. Nauk. SSSR, 38 (1943), 110-113.