

International Journal of Advancements in Research & Technology, Volume 2, Issue 6, June-2013 26
ISSN 2278-7763

Copyright © 2013 SciResPub. IJOART

LAYERED APPROACH FOR PERSONALIZED SEARCH ENGINE LOGS

PRIVACY PRESERVING

M Muneera Begum1 , K Bhargavi2 , Dr. G Prakash Babu3

1Computer Science and Engineering, Intell Engineering College, Anantapur, Andhra Pradesh, India, muns_sha@yahoo.co.in
2 M.Tech, AMIE, Asst.Professor, Dept of CSE, Intell Engineering College,Anantapur, India,bhargavi.konakanti@gmail.com
3 M.Tech, Ph.D Associate Professor, Dept of CSE, Intell Engineering College, Anantapur, India, gpbabu27@gmail.com

ABSTRACT
In this paper we examine the problem of defending privacy for publishing search engine logs. Search engines play a

vital role in the navigation through the enormity of the Web. Privacy-preserving data publishing (PPDP) provides techniques
and tools for publishing helpful information while preserving data privacy. Recently, PPDP has received significant attention in
research communities, and several approaches have been proposed for different data publishing situations. In this paper we
learn privacy preservation for the publication of search engine query logs. Consider a subject that even after eliminating all
personal characteristics of the searcher, which can serve as associations to his identity, the magazine of such data, is still subject
to privacy attacks from opponents who have partial knowledge about the set. Our tentative results show that the query log can
be appropriately anonymized against the particular attack, while retaining a significant volume of helpful data. In this paper we
learn about problem in search logs and why the log is not secure and how to create log secure using data mining algorithm and
methods like Generalization, Suppression and Quasi identifier.

Index Terms: Search engine, log, Algorithm, Data mining method - Suppression, Generalization, Quasi Identifier.

1. INTRODUCTION:

Have you ever wondered what happens when you
type your query into the Google search box and what data
we store about that search? [1] Search involves interactions
between two parties, a user (U) and a search engine (S).
There are two basic interaction cycles between a user and a
search engine: 1. Search: A user U composes and presents a
query q to search engine S, and the search engine S would
return a few search results 1;::::;R fR Rng= to the user.
2. Browse: A user U chooses to view a Result iR 2 R, and
the search engine would convey the user the content of iR .
In a search process connecting many such interaction cycles,
a user thus potentially reveals the following. Three types of
personal information:

1. User identity: This could be a personal user ID in the case
when the user has to register an account, or the IP address
of the machine that the user is using.
2. Queries: This includes all the queries the user has
submitted to the search engine.
3. Viewed results: This includes all the viewed web pages
by the user.

Actually, the user also reveals some context information
such as the time stamp. Since such personal information can
potentially reveal a gamut of user’s private life such as
political inclination, family life, and hobbies, disclosing
such information, particularly in an aggregated fashion,
would clearly elevate serious apprehensions for users. One
may notice that there is a remarkable difference between
user’s queries and clicked search results. Since queries are
composed by users themselves, thus directly reveal the
user’s in sequence need, while the search results are
composed by the Web page publishers. Thus in common,
queries may enclose much more personally identifiable
information (PII) than viewed search results. However,
from the view point of privacy. Protection, both queries
and viewed results can cause concerns for users and the
difference appears to be not crucial. Let’s take a simple
search like “cars.”
When someone types the word “cars” into the Google
search engine, the demand gets sent from that user’s
computer over the internet to our computers, which look
for the accurate explore results. Once our computers have

IJOART

International Journal of Advancements in Research & Technology, Volume 2, Issue 6, June-2013 27
ISSN 2278-7763

Copyright © 2013 SciResPub. IJOART

found the results, they send these support to the User’s
computer, all in a fraction of a second. We then store some
data about this exchange: the search query (“cars”), the
time and date it was typed, the IP address and cookie of the
processor it was entered from, and its browser sort and
operating system. We refer to these records as our search
logs, and most websites accumulate records of visits to their
site in a similar way. Here’s what a typical log entry at
Google looks like:

1.1 IP address:
 123.45.67.89 is the IP address assigned to the user’s
computer by his or her overhaul provider. Just like other
websites, when you ask Google for a page (a search results
page, for example), we use your computer’s IP address to
ensure that we get the right results back to the right
computer. It’s significant to remember that IP addresses
don’t say exactly where an being user is, or who they are. In
fact, some Internet Service Providers (ISPs) give users a
different IP address every time they log onto the web. The
most Google can notify about a user from his computer’s IP
address is that user’s general location (for example, Boston)
and possibly the ISP they use to connect to the Internet.
Only the ISP (who actually controls the user’s account) can
match an individual with an IP address.

Time and date: 25/Aug/2011 10:15:32 is the date and time
the user typed the query into Google.

Search query: http://www.google.com/search?q=cars is the
search query, in this case “cars.”

Browsers and operating Systems: Chrome 2.0.0.7;
Windows NT 5.1 is the browser and operating system
being used.
Cookie: 740674ce2123a969 is the unique cookie ID assigned
to a browser the first time a user visits Google. Similar to an
IP address, a cookie doesn’t tell Google who a user actually
is or where they live - it only identifies a computer. You can
remove these cookies at any time in your computer’s
browser.

1.2. ARCHITECTURE:

Internal Architecture [5]: The below figure provides a
detailed view of the Search service internal architecture.
Following are the components of the Search service's
architecture.

Index Engine: Processes the chunks of text and properties
filtered from content sources, storing them in the content
index and property store.

Query Engine: Executes keyword and SQL syntax
uncertainty against the content index and search
configuration data.

Protocol Handlers: Opens comfortable sources in their
native protocols and exposes documents and other items to
be filtered.

Filters: Opens documents and other content basis items in
their native formats and filters into chunks of text and
properties.

Content Index: Stores in sequence about words and their
location in a content item.

Property Store: Stores a table of properties and associated
values.

Search Configuration Data: Stores information used by the
Search service, including crawl pattern, property schema,
scopes, and so on.

Word breakers: worn by the query and index engines to
break compound words and phrases into individual words
or tokens.

Search Query Execution: When a search [6] query is carried
out, the query engine passes the query through a language-
specific word surf. If there is no word surf for the query
language, the neutral word breaker is worn, which does
whitespace-style word breaking, which means that the

IJOART

http://www.google.com/search?q=cars

International Journal of Advancements in Research & Technology, Volume 2, Issue 6, June-2013 28
ISSN 2278-7763

Copyright © 2013 SciResPub. IJOART

word breaking happens where there are whitespaces in the
words and phrases.

After word breaking, the resulting words are passed
through a stemmer to generate language-specific inflected
forms of a given word. The utilized of word breaker and
stemmer in both the crawling and query processes enhances
the effectiveness of search because more relevant
alternatives to a user's query phrasing are produced. When
the query steam engine executes a property value query, the
directory is checked first to get a list of probable matches.
The properties for the identical documents are loaded from
the property store, and the assets in the query are checked
again to ensure that there was a contest. The result of the
query is a list of all matching results, controlled according
to their relevance to the query words. If the user does not
have consent to a identical document, the query engine
filters that document out of the list that is returned.
Logging Query Log
The information tracked in the query log includes:

1.The query terms being used
2. If Search results were returned for search queries
3. Pages that were viewed from search results

2. PROBLEM STATEMENT

Existing work on publishing logs make Scientists all around
the world to tap this gold mine for their own research. The
log contains sensitive information and Non-personal
information

2.1. Sensitive information

“Sensitive personal information” includes in sequence we
know to be related to confidential medical information,
racial or ethnic origins, political or religious beliefs or
sexuality and tied to personal information.

2.2. Non-personal information

“Non-personal information” is information that is recorded
about users so that it no longer reflects or references an
individually identifiable user. Thus in any search activity,
the information a user U potentially reveals when
attempting to satisfy an information need N can be
represented as (ID(U); TEXT(N)), where ID(U) is some ID
revealed about the identity of the user (e.g., a user ID or an
IP address), and TEXT(N) is a text description of the
information need N (e.g., a set of related queries and/or
viewed results). When a user conducts a series of k search
activities, the susceptible personal information that the user
may reveal can be represented as P(U) = f(ID(U; i); TEXT(N;
i))g where i = 1; :::; k. The privacy concern of a user is that all
or some of the information in P(U) may be captured by
some other people in the world. The anxiety may be less if
P(U) is revealed to some “trustable” party (e.g., a search
engine company that has a clearly written policy on privacy
protection) than to some “untrustable” parties (e.g., any
third party who has access to the web search log). Note that
P(U) is precisely what is needed to help a search engine
better understand the user’s in sequence need. Thus
performing adapted search in some sense “requires” a user
to release P(U). Such tension has created a barrier for
deploying personalized search applications, and the main
challenge of privacy-preservation personalized search is to
exploit P(U) to help improve the search service for U while
protecting P(U) as much as we can from being known by
anyone else in the world. The User identity ID(U) can
generally be mapped to a single or a small group of users
(e.g., family members) with the help of public databases.

For example, given an IP address, geographic in sequence
such as city and state can be known through the who is
service. This approach introduces uncertainty about
individual values before data is published or released to
third parties for Data mining purposes. To avoid such
existing problems we introduce Apriori based suppression
algorithm.

IJOART

International Journal of Advancements in Research & Technology, Volume 2, Issue 6, June-2013 29
ISSN 2278-7763

Copyright © 2013 SciResPub. IJOART

3. IMPLEMENTATION

In this paper our study is based on Apriori based
data repression algorithm. Apriori algorithm used to find
relevant search details of users from search engines (ex:
Bing, Google, Youtube...). Apriori is designed to operate on
databases containing transactions (for example, compilation
of items bought by customers, or details of a website
frequentation). Apriori uses a "bottom up" approach, where
frequent subsets are comprehensive one item at a time (a
step known as candidate generation), and groups of
candidates are experienced against the data. The algorithm
terminates when no additional successful extensions are
found. The reason of the Apriori Algorithm is to find
associations between different sets of data. It is sometimes
referred to as "Market Basket Analysis". Each set of
information has a number of items and is called a
transaction. The output of Apriori is position of rules that
tell us how often items are contained in sets of data.

3.1. Algorithm Pseudocode

The pseudocode for the algorithm [7] is given below for a
transaction database T. and a support threshold of ∈ . Usual
set theoretic notation is employed, though note that T is a
multiset. Ck is the candidate set for altitude k. Generate()
algorithm is assumed to generate the candidate sets from
the large item sets of the previous level, heeding the
downward closure lemma. Count[c] accesses a field of the
data organization that represents candidate set c, which is
primarily assumed to be zero. Many details are omitted
below, usually the most significant part of the
implementation is the data structure used for storing the
candidate sets, and counting their frequencies.

Apriori (,)T ∈

1 {L ← large 1-itemsets}

While 1kL φ− ≠

For transactions t T∈

For candidates tc C∈

[] [] 1count c count c← +

{ [] }
kk c CL count c← ∈ ≥∈

1k k← +

3.2. Example:

A large supermarket tracks sales data by stock-keeping unit
(SKU) for each thing, and thus is able to know what items
are typically purchased together. Apriori is a moderately
efficient way to build a list of frequent purchased item pairs
from this information. Let the database of transactions
consist of the sets {1,2,3,4}, {1,2}, {2,3,4}, {2,3}, {1,2,4}, {3,4},
and {2,4}. Each number corresponds to a product such as
"butter" or "bread". The first step of Apriori is to count up
the frequencies, called the supports, of every member item
separately: This table explains the working of apriori
algorithm.

We can define a minimum support level to qualify as
"frequent," which depends on the context. For this case, let
min support = 3. Therefore, all are frequent. The next step is
to generate a list of all 2-pairs of the frequent items. Had
any of the above items not been recurrent, they wouldn't
have been included as a possible member of possible 2-item
pairs. In this way, Apriori prunes the tree of all achievable
sets. In next step we again select only these items (now 2-
pairs are items) which are frequent:

Item Support

{1,2} 3

{2,3} 3

{2,4} 4

{3,4} 3

Item Support

1 3

2 6

3 4

4 5

2k ←

IJOART

International Journal of Advancements in Research & Technology, Volume 2, Issue 6, June-2013 30
ISSN 2278-7763

Copyright © 2013 SciResPub. IJOART

And generate a list of all 3-triples of the frequent items (by
connecting frequent pairs with frequent single items). In the
example, there are no frequent 3-triples. Most common 3-
triples are {1, 2, 4} and {2, 3, 4}, but their support is equal to
which is smaller than our min support. We consider the
following privacy problem: A data holder wants to release
a version of data for building classification models, but
wants to protect against linking the released data to an
external source for inferring sensitive information. We
adjust an iterative bottom-up generalization from data
mining to generalize the data. This approach incorporates
partially the requirement of a targeted data mining task
into the process of masking data so that essential structure
is preserved in the masked data. The idea is easy but novel:
we explore the data generalization concept from data
mining as a way to hide detailed information, rather than
discover trends and patterns. Once the data is masked,
typical data mining techniques can be applied without
modification.

Our work demonstrated another positive use of
data mining technology: not only can it discover useful
patterns, but also mask private information. Generalization
has several advantages. First, it preserves the
“truthfulness” of information, making the released data
meaningful at the record level. This feature is desirable in
exploratory and visual data mining where decisions often
are made based on examining records. In contrast,
randomized data are useful only at the aggregated level
such as average and frequency. Second, preferences can be
incorporated through the taxonomical hierarchies and the
data recipient can be told what was done to the data so that
the result can be properly interpreted.

3.3. Suppression:

We consider this method to suppress the data by doing so
we can secure the data. The most common method of
preventing the identification of specific individuals in
tabular data is through cell containment. This means not
providing counts in individual cells where doing so would
potentially allow identification of a specific person to be
secure.

We extend our work on micro data suppression

 1.To prevent not only probabilistic but also decision tree
classification based inference

 2.To switch not only single but also multiple confidential

data value suppression to reduce the side-effects.

3.4. Generalization:

A generalization, written fcg(feature coupling generalization) !
p, replaces all child values fcg with the parent value p. A
simplification is valid if all values below c have been
generalized to c. A vid is generalized by fcg ! p if the vid
contains some value in fcg. In the existing paper this
technique is used to hide the actual count of the url in the
database (Anonymity for Classification)

Given a relation R, an anonymity requirement < VID; K >,
and a hierarchy for each attribute in VID, generalize R, by a
sequence of generalizations, to satisfy the requirement and
contain as much information as possible for classification.
The anonymity requirement can be satisfied in more than
one way of generalizing R, and some lose more information
than others with regard to classification. One question is
how to select a sequence of generalizations so that
information loss is minimized. Another query is how to
find this sequence of generalizations efficiently for a large
data set. In this study, we observed that the generalization
novelty factor in that it increased the number of distinct
vids faster. When the number of distinct vids is large, the
effectiveness of the suppression in “generalized-based”
became more significant.

4. CONCLUSION

We have explore data mining as a performance for
masking data, called data mining stand privacy protection.
The idea is to explore the data simplification concept from
data mining as approach to hide detailed information,
slightly than discover trends and patterns. Formerly the
data is masked, standard data mining performance can be
applied without modification. Our work established
another positive use of the data mining technology: not
only can it determine useful patterns, but also mask
classified information. In scrupulous, we presented a
bottom-up overview for transforming specific data to less
specific but semantically reliable data for privacy
protection. We focused on two key concerns, privacy and
scalability. The scalability issue was attending to by a novel
data structure for focusing on good generalizations. The
projected approach achieved a similar eminence but much
better scalability compared to offered solutions.

IJOART

International Journal of Advancements in Research & Technology, Volume 2, Issue 6, June-2013 31
ISSN 2278-7763

Copyright © 2013 SciResPub. IJOART

5. FUTURE WORK

As with most offered work on perturbation based
PPDM, our work is inadequate in the sense that it considers
only linear attacks. More powerful opponents may apply
nonlinear techniques to obtain original data and recover
more information. Studying the MLT-PPDM difficulty
under this adversarial replica is an interesting future
direction.

REFERENCES

 [1] Michaela G¨otz, Ashwin Machanavajjhala, Guozhang
Wang, Xiaokui Xiao, and Johannes Gehrke Publishing Search
Logs – A Comparative Study of Privacy Guarantees – IEEE
Transaction on knowledge and data engineering.
[2] Alberto Trombetta, Wei Jiang, Elisa Bertino and Lorenzo
Bossi Privacy-preserving Updates to Anonymous and
Confidential Databases – IEEE Transaction on knowledge and
data engineering.
[3] Privacy-preserving Mining of Association Rules from
Outsourced Transaction Databases.
 [4] Privacy Protection in Personalized Search Xuehua Shen,
Bin Tan, ChengXiang Zhai Department of Computer Science
University of Illinois at Urbana-Champaign.
 [5]Enterprise Search Architecture
http://msdn.microsoft.com/enus/library/ms570748(v=office.12
).aspx.
 [6]UsingSearch Engines - A Tutorial
http://www.learnwebskills.com/search/engines.html.
 [7] Apriori algorithm - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Apriori_algorithm.
 [8] Website privacy preservation for Query Log publishing –
Barbara poblete, Myra Spiliopoulou and Ricardo Baeza –

[9] http://www.ijcaonline.org/winbis/number1/SPE194T.pdf
Yates.

IJOART

http://msdn.microsoft.com/enus/library/ms570748(v=office.12).aspx
http://msdn.microsoft.com/enus/library/ms570748(v=office.12).aspx
http://www.learnwebskills.com/search/engines.html
http://en.wikipedia.org/wiki/Apriori_algorithm

	ABSTRACT
	1. INTRODUCTION:
	2. PROBLEM STATEMENT
	2.1. Sensitive information
	2.2. Non-personal information

	3. IMPLEMENTATION
	3.1. Algorithm Pseudocode
	3.2. Example:
	3.3. Suppression:
	3.4. Generalization:
	4. CONCLUSION
	5. FUTURE WORK

