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ABSTRACT 
In this paper we examine the problem of defending privacy for publishing search engine logs. Search engines play a 

vital role in the navigation through the enormity of the Web. Privacy-preserving data publishing (PPDP) provides techniques 
and tools for publishing helpful information while preserving data privacy. Recently, PPDP has received significant attention in 
research communities, and several approaches have been proposed for different data publishing situations. In this paper we 
learn privacy preservation for the publication of search engine query logs. Consider a subject that even after eliminating all 
personal characteristics of the searcher, which can serve as associations to his identity, the magazine of such data, is still subject 
to privacy attacks from opponents who have partial knowledge about the set. Our tentative results show that the query log can 
be appropriately anonymized against the particular attack, while retaining a significant volume of helpful data. In this paper we 
learn about problem in search logs and why the log is not secure and how to create log secure using data mining algorithm and 
methods like Generalization, Suppression and Quasi identifier. 

Index Terms: Search engine, log, Algorithm, Data mining method - Suppression, Generalization, Quasi Identifier. 
 
 
1. INTRODUCTION: 

Have you ever wondered what happens when you 
type your query into the Google search box and what data 
we store about that search? [1] Search involves interactions 
between two parties, a user (U) and a search engine (S). 
There  are two basic interaction cycles between a user and a 
search engine: 1. Search: A user U composes and presents a 
query q to search engine S, and the search engine S would 
return a few search results 1;::::;R fR Rng= to the user.        
2. Browse: A user U chooses to view a Result iR  2 R, and 
the search engine would convey the user the content of iR . 
In a search process connecting many such interaction cycles, 
a user thus potentially reveals the following. Three types of 
personal information: 

1. User identity: This could be a personal user ID in the case 
when the user has to register an account, or the IP address 
of the machine that the user is using. 
2. Queries: This includes all the queries the user has 
submitted to the search engine. 
3. Viewed results: This includes all the viewed web pages 
by the user. 

 
 
 
Actually, the user also reveals some context information 
such as the time stamp. Since such personal information can 
potentially reveal a gamut of user’s private life such as 
political inclination, family life, and hobbies, disclosing 
such information, particularly in an aggregated fashion, 
would clearly elevate serious apprehensions for users. One 
may notice that there is a remarkable difference between 
user’s queries and clicked search results. Since queries are 
composed by users themselves, thus directly reveal the 
user’s in sequence need, while the search results are 
composed by the Web page publishers. Thus in common, 
queries may enclose much more personally identifiable 
information (PII) than viewed search results. However, 
from the view point of  privacy. Protection, both queries 
and viewed results can cause concerns for users and the 
difference appears to be not crucial. Let’s take a simple 
search like “cars.” 
When someone types the word “cars” into the Google 
search engine, the demand gets sent from that user’s 
computer over the internet to our computers, which look 
for the accurate explore results. Once our computers have 
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found the results, they send these support to the User’s 
computer, all in a fraction of a second. We then store some 
data about this exchange: the search query (“cars”), the 
time and date it was typed, the IP address and cookie of the 
processor it was entered from, and its browser sort and 
operating system. We refer to these records as our search 
logs, and most websites accumulate records of visits to their 
site in a similar way. Here’s what a typical log entry at 
Google looks like: 

 
1.1 IP address: 
  123.45.67.89 is the IP address assigned to the user’s 
computer by his or her overhaul provider. Just like other 
websites, when you ask Google for a page (a search results 
page, for example), we use your computer’s IP address to 
ensure that we get the right results back to the right 
computer. It’s significant to remember that IP addresses 
don’t say exactly where an being user is, or who they are. In 
fact, some Internet Service Providers (ISPs) give users a 
different IP address every time they log onto the web. The 
most Google can notify about a user from his computer’s IP 
address is that user’s general location (for example, Boston) 
and possibly the ISP they use to connect to the Internet. 
Only the ISP (who actually controls the user’s account) can 
match an individual with an IP address. 

Time and date: 25/Aug/2011 10:15:32 is the date and time 
the user typed the query into Google. 

Search query: http://www.google.com/search?q=cars is the 
search query, in this case “cars.” 

Browsers and operating Systems: Chrome 2.0.0.7; 
Windows NT 5.1 is the browser and operating system 
being used. 
Cookie: 740674ce2123a969 is the unique cookie ID assigned 
to a browser the first time a user visits Google. Similar to an 
IP address, a cookie doesn’t tell Google who a user actually 
is or where they live - it only identifies a computer. You can 
remove these cookies at any time in your computer’s 
browser. 

1.2. ARCHITECTURE: 

 

 

Internal Architecture [5]: The below figure provides a 
detailed view of the Search service internal architecture. 
Following are the components of the Search service's 
architecture. 

Index Engine: Processes the chunks of text and properties 
filtered from content sources, storing them in the content 
index and property store. 

Query Engine: Executes keyword and SQL syntax 
uncertainty against the content index and search 
configuration data. 

Protocol Handlers: Opens comfortable sources in their 
native protocols and exposes documents and other items to 
be filtered. 

Filters: Opens documents and other content basis items in 
their native formats and filters into chunks of text and 
properties. 

Content Index: Stores in sequence about words and their 
location in a content item. 

Property Store: Stores a table of properties and associated 
values. 

Search Configuration Data: Stores information used by the 
Search service, including crawl pattern, property schema, 
scopes, and so on.  
 
Word breakers: worn by the query and index engines to 
break compound words and phrases into individual words 
or tokens. 

Search Query Execution: When a search [6] query is carried 
out, the query engine passes the query through a language-
specific word surf. If there is no word surf for the query 
language, the neutral word breaker is worn, which does 
whitespace-style word breaking, which means that the 
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word breaking happens where there are whitespaces in the 
words and phrases. 

 

  

After word breaking, the resulting words are passed 
through a stemmer to generate language-specific inflected 
forms of a given word. The utilized of word breaker and 
stemmer in both the crawling and query processes enhances 
the effectiveness of search because more relevant 
alternatives to a user's query phrasing are produced. When 
the query steam engine executes a property value query, the 
directory is checked first to get a list of probable matches. 
The properties for the identical documents are loaded from 
the property store, and the assets in the query are checked 
again to ensure that there was a contest. The result of the 
query is a list of all matching results, controlled according 
to their relevance to the query words. If the user does not 
have consent to a identical document, the query engine 
filters that document out of the list that is returned. 
Logging Query Log  
The information tracked in the query log includes:   

1.The query terms being used 
2.  If Search results were returned for search queries 
3. Pages that were viewed from search results 

2. PROBLEM STATEMENT 

Existing work on publishing logs make Scientists all around 
the world to tap this gold mine for their own research. The 
log contains sensitive information and Non-personal 
information 

2.1. Sensitive information 

“Sensitive personal information” includes in sequence we 
know to be related to confidential medical information, 
racial or ethnic origins, political or religious beliefs or 
sexuality and tied to personal information. 

2.2. Non-personal information 

“Non-personal information” is information that is recorded 
about users so that it no longer reflects or references an 
individually identifiable user. Thus in any search activity, 
the information a user U potentially reveals when 
attempting to satisfy an information need N can be 
represented as (ID(U); TEXT(N)), where ID(U) is some ID 
revealed about the identity of the user (e.g., a user ID or an 
IP address), and TEXT(N) is a text description of the 
information need N (e.g., a set of related queries and/or 
viewed results). When a user conducts a series of k search 
activities, the susceptible personal information that the user 
may reveal can be represented as P(U) = f(ID(U; i); TEXT(N; 
i))g where i = 1; :::; k. The privacy concern of a user is that all 
or some of the information in P(U) may be captured by 
some other people in the world. The anxiety may be less if 
P(U) is revealed to some “trustable” party (e.g., a search 
engine company that has a clearly written policy on privacy 
protection) than to some “untrustable” parties (e.g., any 
third party who has access to the web search log). Note that 
P(U) is precisely what is needed to help a search engine 
better understand the user’s in sequence need. Thus 
performing adapted search in some sense “requires” a user 
to release P(U). Such tension has created a barrier for 
deploying personalized search applications, and the main 
challenge of privacy-preservation personalized search is to 
exploit P(U) to help improve the search service for U while 
protecting P(U) as much as we can from being known by 
anyone else in the world. The User identity ID(U) can 
generally be mapped to a single or a small group of users 
(e.g., family members) with the help of public databases. 

For example, given an IP address, geographic in sequence 
such as city and state can be known through the who is 
service. This approach introduces uncertainty about 
individual values before data is published or released to 
third parties for Data mining purposes. To avoid such 
existing problems we introduce Apriori based suppression 
algorithm. 
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3. IMPLEMENTATION 

In this paper our study is based on Apriori based 
data repression algorithm. Apriori algorithm used to find 
relevant search details of users from search engines (ex: 
Bing, Google, Youtube...). Apriori is designed to operate on 
databases containing transactions (for example, compilation 
of items bought by customers, or details of a website 
frequentation). Apriori uses a "bottom up" approach, where 
frequent subsets are comprehensive one item at a time (a 
step known as candidate generation), and groups of 
candidates are experienced against the data. The algorithm 
terminates when no additional successful extensions are 
found. The reason of the Apriori Algorithm is to find 
associations between different sets of data. It is sometimes 
referred to as "Market Basket Analysis". Each set of 
information has a number of items and is called a 
transaction. The output of Apriori is position of rules that 
tell us how often items are contained in sets of data. 

3.1. Algorithm Pseudocode 

The pseudocode for the algorithm [7] is given below for a 
transaction database T. and a support threshold of ∈ . Usual 
set theoretic notation is employed, though note that T is a 
multiset. Ck is the candidate set for altitude k. Generate() 
algorithm is assumed to generate the candidate sets from 
the large item sets of the previous level, heeding the 
downward closure lemma. Count[c] accesses a field of the 
data organization that represents candidate set c, which is 
primarily assumed to be zero. Many details are omitted 
below, usually the most significant part of the 
implementation is the data structure used for storing the 
candidate sets, and counting their frequencies. 

Apriori ( , )T ∈   

1 {L ←  large 1-itemsets}  

  
 

While 1kL φ− ≠  

For transactions t T∈  

For candidates tc C∈  

[ ] [ ] 1count c count c← +  

{ [ ] }
kk c CL count c← ∈ ≥∈  

1k k← +  

3.2. Example: 
 
A large supermarket tracks sales data by stock-keeping unit 
(SKU) for each thing, and thus is able to know what items 
are typically purchased together. Apriori is a moderately 
efficient way to build a list of frequent purchased item pairs 
from this information. Let the database of transactions 
consist of the sets {1,2,3,4}, {1,2}, {2,3,4}, {2,3}, {1,2,4}, {3,4}, 
and {2,4}. Each number corresponds to a product such as 
"butter" or "bread". The first step of Apriori is to count up 
the frequencies, called the supports, of every member item 
separately: This table explains the working of apriori 
algorithm. 

 

 

We can define a minimum support level to qualify as 
"frequent," which depends on the context. For this case, let 
min support = 3. Therefore, all are frequent. The next step is 
to generate a list of all 2-pairs of the frequent items. Had 
any of the above items not been recurrent, they wouldn't 
have been included as a possible member of possible 2-item 
pairs. In this way, Apriori prunes the tree of all achievable 
sets. In next step we again select only these items (now 2-
pairs are items) which are frequent: 

Item Support 

{1,2} 3 

{2,3} 3 

{2,4} 4 

{3,4} 3 

 

Item Support 

1 3 

2 6 

3 4 

4 5 

2k ←
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And generate a list of all 3-triples of the frequent items (by 
connecting frequent pairs with frequent single items). In the 
example, there are no frequent 3-triples. Most common 3- 
triples are {1, 2, 4} and {2, 3, 4}, but their support is equal to 
which is smaller than our min support. We consider the 
following privacy problem: A data holder wants to release 
a version of data for building classification models, but 
wants to protect against linking the released data to an 
external source for inferring sensitive information. We 
adjust an iterative bottom-up generalization from data 
mining to generalize the data. This approach incorporates 
partially the requirement of a targeted data mining task 
into the process of masking data so that essential structure 
is preserved in the masked data. The idea is easy but novel: 
we explore the data generalization concept from data 
mining as a way to hide detailed information, rather than 
discover trends and patterns. Once the data is masked, 
typical data mining techniques can be applied without 
modification. 

Our work demonstrated another positive use of 
data mining technology: not only can it discover useful 
patterns, but also mask private information. Generalization 
has several advantages. First, it preserves the 
“truthfulness” of information, making the released data 
meaningful at the record level. This feature is desirable in 
exploratory and visual data mining where decisions often 
are made based on examining records. In contrast, 
randomized data are useful only at the aggregated level 
such as average and frequency. Second, preferences can be 
incorporated through the taxonomical hierarchies and the 
data recipient can be told what was done to the data so that 
the result can be properly interpreted. 

3.3. Suppression: 

We consider this method to suppress the data by doing so 
we can secure the data. The most common method of 
preventing the identification of specific individuals in 
tabular data is through cell containment. This means not 
providing counts in individual cells where doing so would 
potentially allow identification of a specific person to be 
secure. 

We extend our work on micro data suppression 

  1.To prevent not only probabilistic but also decision tree 
classification based inference 

  2.To switch not only single but also multiple confidential 

data value suppression to reduce the side-effects. 
 
3.4. Generalization: 

A generalization, written fcg(feature coupling generalization) ! 
p, replaces all child values fcg with the parent value p. A 
simplification is valid if all values below c have been 
generalized to c. A vid is generalized by fcg ! p if the vid 
contains some value in fcg. In the existing paper this 
technique is used to hide the actual count of the url in the 
database (Anonymity for Classification) 

Given a relation R, an anonymity requirement < VID; K >, 
and a hierarchy for each attribute in VID, generalize R, by a 
sequence of generalizations, to satisfy the requirement and 
contain as much information as possible for classification. 
The anonymity requirement can be satisfied in more than 
one way of generalizing R, and some lose more information 
than others with regard to classification. One question is 
how to select a sequence of generalizations so that 
information loss is minimized. Another query is how to 
find this sequence of generalizations efficiently for a large 
data set. In this study, we observed that the generalization 
novelty factor in that it increased the number of distinct 
vids faster. When the number of distinct vids is large, the 
effectiveness of the suppression in “generalized-based” 
became more significant. 

 

4. CONCLUSION 

We have explore data mining as a performance for 
masking data, called data mining stand privacy protection. 
The idea is to explore the data simplification concept from 
data mining as approach to hide detailed information, 
slightly than discover trends and patterns. Formerly the 
data is masked, standard data mining performance can be 
applied without modification. Our work established 
another positive use of the data mining technology: not 
only can it determine useful patterns, but also mask 
classified information. In scrupulous, we presented a 
bottom-up overview for transforming specific data to less 
specific but semantically reliable data for privacy 
protection. We focused on two key concerns, privacy and 
scalability. The scalability issue was attending to by a novel 
data structure for focusing on good generalizations. The 
projected approach achieved a similar eminence but much 
better scalability compared to offered solutions. 
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5. FUTURE WORK 

As with most offered work on perturbation based 
PPDM, our work is inadequate in the sense that it considers 
only linear attacks. More powerful opponents may apply 
nonlinear techniques to obtain original data and recover 
more information. Studying the MLT-PPDM difficulty 
under this adversarial replica is an interesting future 
direction. 
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