Inverse Thermoelastic Problem of An Elliptical Crown of Thin Plate

Sunil D. Bagde

Research Scholar, Department of Mathematics, MJP Educational Campus, RTM Nagpur University, Nagpur 440 033, India.
Email: sunilkumarbagde@rediffmail.com

ABSTRACT

This paper is concerned with inverse thermoelastic problem of an elliptical plate to determine the temperature distribution and unknown temperature gradient at point \(\xi = b \) for all time \((t > 0)\) with the help of Mathiue transform and integral transform techniques.

Keywords: Inverse thermoelastic problem, Mathiue transform, Marchi-Fasulo transform.

AMS SUBJECT CLASSIFICATION NO. 35-XX, 44-XX, 80-XX

1 INTRODUCTION

The small transverse vibrations produced in a circular crown of thin plate with certain boundary condition is solved by Marchi [1] with the help of Hankel and Laplace transforms. This problem is solved by Mathieu transform and Marchi-Fasulo transform techniques.

2 STATEMENT OF THE PROBLEM

The differential equation which governs the phenomenon in elliptical co-ordinates is given by

\[
b^2 \left(\frac{\partial^2 \omega(\xi, \eta, z,t)}{\partial \xi^2} + \frac{\partial^2 \omega(\xi, \eta, z,t)}{\partial \eta^2} \right) \frac{2d^2}{(\cosh 2\xi - \cos 2\eta)} - \frac{\partial^2 \omega(\xi, \eta, z,t)}{\partial z^2} \frac{2d}{\rho d} = P(\xi, \eta, z,t) \quad a \leq \xi \leq b, \quad -h \leq z \leq h, \quad 0 \leq \eta \leq 2\pi.
\]

Where

\(\omega \) =Displacement, \(\xi, \eta \) are elliptical co-ordinates

\(b^2 = \frac{D}{2 \rho n} \) = flexural rigidity

\(\rho \) = Density of the material

\(D = \frac{2Ed^3}{3(1-\sigma^2)} \), \(E \) = Young’s Modulus

\(h \) = thickness of the plate

\(p \) = forcing function

\(\sigma \) = coefficient of Poisson

\(2d \) = Interfocal length of elliptic crown

The solution of equation (1) is given by

\[
\omega(a, \eta, z,t) = \left[\frac{\partial^2}{\partial \xi^2} + \frac{\partial^2}{\partial \eta^2} \right] \frac{2d^2}{(\cosh 2\xi - \cos 2\eta)} \bigg|_{\xi=a} = 0
\]

\(0 \leq \eta \leq 2\pi \) for all \(t \).

\[
\omega(b, \eta, z,t) = \left[\frac{\partial^2}{\partial \xi^2} + \frac{\partial^2}{\partial \eta^2} \right] \frac{2d^2}{(\cosh 2\xi - \cos 2\eta)} \bigg|_{\xi=b} = 0
\]

\(0 \leq \eta \leq 2\pi \) for all \(t \)

\[
\omega(a, \eta, z,0) = f(\xi, \eta, z), \quad \frac{\partial \omega}{\partial t} = g(\xi, \eta, z),
\]

\(0 \leq \eta \leq 2\pi \) for all \(t \)

\[
\left[\omega + k_1 \frac{\partial \omega}{\partial z} \right]_{z=h} = 0, \quad \left[\omega + k_2 \frac{\partial \omega}{\partial z} \right]_{z=-h} = 0 \quad (5)
\]

The equations (1) – (5) constitute the mathematical formulation of the problem under consideration.

3 REQUIRED RESULT

FINITE MATHIEU TRANSFORM

The Mathieu transform of \([f(\xi, \eta)] \) is defined as

\[
M[f(\xi, \eta)] = \int_{a}^{b} \int_{-h}^{h} f(\xi, \eta, z) B_{2n}(\xi, \eta, z) \cos 2\eta d\xi d\eta
\]

\[
B_{2n}(\xi, \eta, z) = \left[\{ FeY_{2n}(a, \eta, z) - FeY_{2n}(b, \eta, z) \} \times CeY_{2n}(\xi, \eta, z) \right] F_{2n}(\xi, \eta, z)
\]

\[
Ce_{2n}(\xi, \eta, z) = \left[\{ CeY_{2n}(a, \eta, z) - CeY_{2n}(b, \eta, z) \} \times FeY_{2n}(\xi, \eta, z) \right] F_{2n}(\xi, \eta, z)
\]
$q_{2n,m}$ are the roots of the equation

$$Ce_{2n}(b,q)Fe_{2n}(a,q) - Fe_{2n}(b,q)Ce_{2n}(a,q) = 0$$

And

$$Fe_{2n}(\xi,q) = \sum_{r=0}^{\infty} A_{2r} \frac{Ce_{2n}(\xi,q)}{A_{2n}^{2}} Y_{2r}(2k'sinh\xi), |sinh\xi| > 0, R(\xi) > 0$$

Where $k = q$, Y is Bessel function.

Property of the transform:

$$M \left[\frac{\varrho^2}{\varrho^2 + \varrho^2} - \frac{2d^2}{(cosh2\varrho - cos2\eta)} \right] = \frac{-4q_{2n,m}}{d^2}$$

(8)

Inversion of Mathieu transform is

$$\omega(\xi, \eta) = \frac{1}{\pi} \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} b B_{2n}(q_{2n,m})$$

(9)

Where

$$\theta_{2n,m} = \frac{1}{\pi} \int_{0}^{2\pi} ce_{2n}(\eta, q_{2n,m}) cos2\eta d\eta$$

(10)

4 SOLUTION

By applying finite Mathieu transform defined in (5) repeatedly and finite Marchi-Fasulo transform and Laplace transform to the equation (2), and then inversion of transforms, we get

$$\omega(\xi, \eta, t) = \frac{1}{\pi} \sum_{l=0}^{\infty} \frac{P_{l}(z)}{\mu_{l}} \sum_{n=0}^{\infty} \frac{C_{2n,m}(\xi, \eta, q_{2n,m})}{\varrho^{2}(q_{2n,m}, \xi, \eta, q_{2n,m}, t)}$$

(11)

and

$$C_{2n,m} = \frac{1}{\pi} b \int_{a}^{b} B_{2n}(\xi, \eta, q_{2n,m})|cosh2\xi - \theta_{2n,m}| d\xi$$

(12)

Hence the solution is given by

$$\omega(\xi, \eta, t) = \frac{1}{\pi} \sum_{l=0}^{\infty} \frac{P_{l}(z)}{\mu_{l}} \sum_{n=0}^{\infty} \frac{\varrho^{2}(q_{2n,m}, \xi, \eta, q_{2n,m})}{\varrho^{2}(q_{2n,m}, \xi, \eta, q_{2n,m}, t)} B_{2n}(\xi, \eta, q_{2n,m})|cosh2\xi - \theta_{2n,m}| d\xi$$

(13)

Where,

$$\varrho^{2} = \int \lambda_{2n,m} b \lambda_{2n,m}^{2} \sin b \lambda_{2n,m}^{2} \lambda_{2n,m}^{2}$$

$$+ \frac{1}{2} \int_{0}^{\infty} 1 \int b \lambda_{2n,m}^{2} \lambda_{2n,m}^{2} \sin b \lambda_{2n,m}^{2} \lambda_{2n,m}^{2}$$

(14)

5 CONCLUSION

In this paper, an elastic vibration of elliptic plate have been determined with the help of finite Mathieu transform and finite Marchi-Fasulo transform and Laplace transform techniques. The expression is represented graphically. The results that are obtained can be useful to the design of structures or machines in engineering applications.

ACKNOWLEDGEMENT

The authors are thankful to University Grant Commission, New Delhi for providing the partial financial support under Rajiv Gandhi national fellowship scheme.

REFERENCES