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ABSTRACT 
This paper determines the eigenvalues and eigenspaces of certain symmetric matrices 𝑇𝑚,𝑘(𝑥)[𝜆] for some values of m and k. For each m,k 
signed partial l-factor, the matrix 𝑇𝑚,𝑘(𝑥)[𝜆] with entries <.> which gives a complete structure of signed Brauer algebra 𝑆𝑓

(𝑥). 
 
 
 
 
KeyWords 
Eigenvalues, Eigenspaces, signed Braueralgebra, matix rings, representations, radicals. 
 

 

 

 

 

 

 

 

 

 

IJOART



International Journal of Advancements in Research & Technology, Volume 2, Issue 9, September-2013                                     125 
ISSN 2278-7763  

Copyright © 2013 SciResPub.                                                                                 IJOART 

 

1.Introduction  
The signed Brauer algebra 𝑆𝑓

(𝑥) which is a centralizer of algebras of direct product of orthogonal groups over the field of real 
numbers ℝ [5].  In this paper, we define the signed Brauer algebra in terms of signed 1-factor and signed 1-factor in terms of 𝑚, 𝑘 
signed partial l-factor. Also, we define certain symmetric matrices 𝑇𝑚,𝑘(𝑥)[𝜆] for those  𝑚,𝑘 signed partial l-factor 𝑃𝑚,𝑘. We ana-
lyse the irreducible representations of 𝑆𝑓

(𝑥) by determining the quotient  𝐻𝑓
(𝑥)(2𝑘) by its radical where the radical of  𝑆𝑓

(𝑥) must lie 
in the nullspace of 𝑇𝑚,𝑘(𝑥)[𝜆]. We also find the eigenvalues and eigenspaces of certain symmetric matrices 𝑇𝑚,𝑘(𝑥)[𝜆] using the 
representation theory of the hyper-octahedral group of type 𝐵𝑛. 

2.The structure of 𝑺𝒇
(𝒙) 

Definition 2.1. A signed 1-factor on 2f vertices is a signed diagram with 2f vertices and f signed edges such that each vertex is 
incident to exactly one edge where each edge is labeled by the edge with arrow or the edge without arrow. An edge without 
arrow is called positive edge and an edge with arrow is called negative edge. 

Let  𝑃𝑓 denote the set of all signed 1-factors on 2f vertices. Let  𝑉𝑓 be the vector space with basis 𝑃𝑓. A signed 1-factor 𝛿∈𝑃𝑓 
will often be drawn as a diagram having two rows of 2f vertices each, the vertices 1,2, … , 𝑓 in a top row denoted by t(𝛿) and the 
vertices 𝑓 + 1,𝑓 + 2, … ,2𝑓 in a bottom row denoted by 𝑏(𝛿). A signed edge of 𝛿 joining two vertices in t(𝛿) or two vertices in 
𝑏(𝛿) is called a signed horizontal edge. A signed edge of 𝛿 joining a vertex in t(𝛿) to a vertex in 𝑏(𝛿) will be called a signed ver-
tical edge. We let  𝑉𝑓(2𝑘) denote the subspace of  𝑉𝑓 spanned by all 𝛿∈𝑃𝑓 with ℎ(𝛿) ≥ 2𝑘 where ℎ(𝛿) is the number of signed hor-
izontal edges in 𝑃𝑓. 

Let 𝛿1 and 𝛿2 be l-factors in 𝑃𝑓. The graph 𝑈(𝛿1,𝛿2) with 3f vertices obtained by identifying the bottom  row of 𝛿1with the top 
row of 𝛿2.  

It  is  easy to  check, for  any  𝛿1 and 𝛿2,  and  that  𝑈(𝛿1,𝛿2) consists of  exactly  f  signed paths  𝑃1,𝑃2, … ,𝑃𝑓 where signed path 
𝑃𝑖 is a path having signed edges and  some number  𝛾(𝑈(𝛿1,𝛿2)) of signed cycles 𝐶1, … ,𝐶𝛾(𝑈(𝛿1,𝛿2)) where signed cycle 𝐶𝑖 is a cycle 
having signed edges  along the cycle satisfying:  

(1) The endpoints of the signed paths  𝑃𝑖  lie in the set 𝑡(𝛿1) ∪ 𝑏(𝛿2). 
(2) Each signed cycle 𝐶𝑖 is of even length and consists entirely of vertices in the set 𝑏(𝛿1) = 𝑡(𝛿2).  

 
Definition 2.2.  Let 𝛿1 and 𝛿2 be l-factors in 𝑃𝑓.  Define the braid of 𝛿1over 𝛿2 denoted 𝛽(𝛿1,𝛿2) to be the l-factor with top row 
𝑡(𝛿1) and bottom row 𝑏(𝛿2) and with vertices u and v adjacent if and only if there is a signed path 𝑃𝑖 in 𝑈(𝛿1,𝛿2) joining u to v 
and an edge joining u to v is labeled by the product of the labels along the path 𝑃𝑖.  Define algebras  𝑆𝑓

(𝑥) = �𝑉𝑓 ,∘� to be the ℝ-
algebras with vector space bases  𝑉𝑓 and multiplication of l-factors given by 

�in 𝑆𝑓
(𝑥)� 𝛿1 ∘ 𝛿2 = 𝑥𝛾(𝑈(𝛿1,𝛿2))𝛽(𝛿1,𝛿2) 

where  each cycle 𝐶𝑖 in 𝑈(𝛿1,𝛿2) is labeled by the product of the labels along the cycle 𝐶𝑖.  This algebra 𝑆𝑓
(𝑥) is called the signed 

Brauer algebra [4]. 
The subspace 𝑉𝑓(2𝑘) spanned by all signed 1-factors of 2𝑓 vertices with atleast 2𝑘 signed horizontal edges spans an ideal 

𝑆𝑓
(𝑥)(2𝑘) of 𝑆𝑓

(𝑥). To describe the structure of the quotients  𝑆𝑓
(𝑥)(2𝑘)/ 𝑆𝑓

(𝑥)(2𝑘+ 2) in terms of the eigenvalues and eigenspaces of 
certain matrices. Let 𝐻𝑓

(𝑥)(2𝑘) denote the quotient 𝑆𝑓
(𝑥)(2𝑘)/ 𝑆𝑓

(𝑥)(2𝑘+ 2).  
Definition 2.3.  A 𝑚, 𝑘 signed partial l-factor is a graph with 𝑚 + 2𝑘 vertices and 𝑘 signed lines and m free vertices. Let 𝑃𝑚,𝑘 de-
note the set of 𝑚, 𝑘 signed partial l-factors, and let 𝑉𝑚,𝑘 be the real vector space with basis 𝑃𝑚,𝑘. 

A labeled 𝑚, 𝑘 signed partial l-factor is a graph with 𝑚 + 2𝑘  vertices, has exactly k signed edges and 𝑚 signed free vertices. 
Let us now define 𝜋 ∈ 𝑆̃𝑚 by 𝜋(𝑖) = (𝜏(𝑖),𝜎(𝑖)) where 𝜎 ∈ 𝑆𝑚 and 𝜏:𝑚  →  2 , 𝑚 denotes the set {1,2, … ,𝑚} and 2  denotes  the set 
{±1}. 

A signed path 𝑃𝑖 joining the free vertex u to free vertex v is labeled by the product of the labels along the  path  𝑃𝑖. 
A signed cycle 𝐶𝑖 is labeled by the product of the labels along the  cycle 𝐶𝑖. 
Let 𝑓1 and  𝑓2 be 𝑚, 𝑘 signed partial l-factors with 𝛼1 < 𝛼2 < ⋯ < 𝛼𝑚 the free vertices of 𝑓1 and 𝛽1 < 𝛽2 < ⋯ < 𝛽𝑚 the free ver-

tices of 𝑓2. The union of 𝑓1 and 𝑓2 is a signed graph consisting of some number 𝛾(𝑓1,𝑓2) of disjoint signed cycles together with 𝑚 
disjoint signed paths 𝑃1, … ,𝑃𝑚 whose endpoints are in the set {𝛼1,𝛼2, … ,𝛼𝑚,𝛽1,𝛽2, … ,𝛽𝑚}. Define an inner product 〈𝑓1,𝑓2〉 on 𝑉𝑚,𝑘 
as follows. Given 𝑓1,𝑓2 as above: 

1. If any signed path 𝑃𝑖 joins a 𝛼𝑗 to a 𝛼𝑖 (or equivalently a 𝛽𝑗 to a 𝛽𝑖) then 〈𝑓1,𝑓2〉 = 0. 
2. If 𝑃𝑖 joins 𝛽𝑖  to 𝛼𝜎𝑖 and labeled by 𝜏(𝑖) then 〈𝑓1,𝑓2〉 = 𝑥𝛾(𝑓1,𝑓2)𝜋 where 𝜋 ∈ 𝑆̃𝑚, 𝑆̃𝑚 is the hyperoctahedral group of type 𝐵𝑛. 

Note that 〈𝑓1,𝑓2〉 = 〈𝑓2∗,𝑓1∗〉, where ∗ is the anti-isomorphism defined on the algebra ℝ𝑆̃𝑚 by 𝜎 → 𝜎−1. 
Proposition 2.4. Let 𝑓 = 𝑚 + 2𝑘. Then the quotient 𝐻𝑓

(𝑥)(2𝑘) is isomorphic as algebra to �𝑉𝑚,𝑘⊗ 𝑉𝑚,𝑘⊗ ℝ𝑆̃𝑚,∙�, where (𝑎⊗𝑏⊗𝑧) ∙
(𝑐⊗𝑑⊗𝑦) = 𝑎⊗𝑑⊗(𝑧  〈𝑏, 𝑐〉 𝑦). 
Proof. As a vector space 𝐻𝑓

(𝑥)(2𝑘) has basis the set of all signed l-factor with exactly 2𝑘 signed horizontal edges. 
Define the linear map ϕ: 𝑉𝑚,𝑘⊗ 𝑉𝑚,𝑘⊗ ℝ𝑆̃𝑚 → H𝑓

(𝑥)(2𝑘), in the following way. Given 𝑓1,𝑓2∈𝑃𝑚,𝑘 with free vertices 𝛼1 < 𝛼2 < ⋯ <
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𝛼𝑚 and 𝛽1 < 𝛽2 < ⋯ < 𝛽𝑚 and given 𝜎∈𝑆̃𝑚 define ϕ(𝑓1⊗ 𝑓2⊗ 𝜎) to be the signed l-factor of 2𝑓 vertices with 
1. a signed horizontal edge joining i to j in the top row if and only if i and j are adjacent in 𝑓1; 
2. a signed horizontal edge joining (𝑓 + 𝑖) to (𝑓 + 𝑗) in the bottom row if and only if i and j are adjacent in  𝑓2; 
3. a signed vertical edge joining 𝛼𝑖 to 𝛽𝜎𝑖 and labeled by 𝜏(𝑖) where 𝜋 = (𝜏,𝜎)∈𝑆̃𝑚, 𝜎 ∈ 𝑆𝑚. 

By the above construction of ϕ, ϕ is 1-1 and onto and hence it is a vector space isomorphism of 𝑉𝑚,𝑘⊗ 𝑉𝑚,𝑘⊗ ℝ𝑆̃𝑚, onto 𝐻𝑓
(𝑥)(2𝑘). 

It remains to show that ϕ is multiplicative. It is enough to prove ϕ(𝑥 ∙ y) = ϕ(𝑥) ∘ ϕ(y), 𝑥, 𝑦 ∈ 𝑉𝑚,𝑘⊗ 𝑉𝑚,𝑘⊗ ℝ𝑆̃𝑚. 
Let 𝑥 = 𝑎 ⊗ b ⊗ 𝜋1 and  𝑦 = 𝑐 ⊗ d ⊗ 𝜋2 , 𝑎,𝑏, 𝑐,𝑑∈𝑃𝑚,𝑘, 𝜋1,𝜋2∈𝑆̃𝑚. 
Let a, b, c, d be 𝑚,𝑘 signed partial l-factor with free vertices 𝛼1 < 𝛼2 < ⋯ < 𝛼𝑚, 𝛽1 < 𝛽2 < ⋯ < 𝛽𝑚, 𝛾1 < 𝛾2 < ⋯ < 𝛾𝑚,  𝛿1 <

𝛿2 < ⋯ < 𝛿𝑚 respectively.  
By the ∘ defined above, 𝑑1 ∘ 𝑑2 = 𝑥𝛾𝑑3, 𝑑1,𝑑2∈H𝑓

(𝑥)(2𝑘), 𝑑3∈S𝑓
(𝑥)(2𝑘). 

Case 1. Suppose there is a signed path joining 𝛼𝑖 to 𝛼𝜎𝑖 in 𝑈(𝛿1,𝛿2) then ϕ(𝑎 ⊗ b ⊗ 𝜋1) ∘ ϕ(𝑐 ⊗ d ⊗ 𝜋2) = 0 = ϕ((𝑎 ⊗ b ⊗ 𝜋1) ∙
(𝑐 ⊗ d ⊗ 𝜋2)). Therefore ϕ(𝑥 ∙ y) = ϕ(𝑥) ∘ ϕ(y). 
Case 2. Suppose there is a signed path joining 𝛼𝑖 to 𝛿𝜎𝑖 in 𝑈(𝛿1,𝛿2) then ϕ(𝑥 ∙ y) = 𝑥𝛾𝑑3 =  ϕ(𝑥) ∘ ϕ(y). 

Hence ϕ is an algebra isomorphism. 
 

Definition 2.5. A bi-partition [𝜆] of n denoted by [𝜆] ⊢ 𝑛, is 2 -tuple of partitions [𝜆] = (𝜆(1),𝜆(2)) such that ∑ �𝜆(𝑖)� = 𝑛2
𝑖=1 .  

Definition 2.6. Given a bi-partition [𝜆] of n, we mean the Young diagram of  [𝜆] filled with the entries containing {(±1, 𝑖)} in 
such a way that the entries containing exactly one of {(±1, 𝑖)} is called bi-tableau 𝑡. 
Definition 2.6. For each bi-partition [𝜆], the Young subgroup 𝑆[𝜆] = 𝑆𝜆(1) × 𝑆𝜆(2). 
Definition 2.7. Given a bi-tableau 𝑡 of shape [𝜆] ⊢ 𝑛, the set of all elements in 𝑆̃𝑛, which leaves the rows of (2)nd-residue stable 
upto sign change and (1)st-residue stable, is a subgroup of 𝑆̃𝑛, called the row stabilizer and denoted by 𝑅𝑡 , 

𝑅𝑡 ≃ 𝑆𝜆1(1) ×⋅⋅⋅× 𝑆𝜆𝑞1
(1) × 𝑆̃𝜆1(2) ×⋅⋅⋅× 𝑆̃𝜆𝑞𝑟

(2) 
where 𝜆𝑖

(𝑗)is the length of the ith row in jth residue. 
Definition 2.8. Given a bi-tableau 𝑡 of shape [𝜆] ⊢ 𝑛, the set of all elements in 𝑆̃𝑛, which leaves the columns of (2)nd-residue sta-
ble and (1)st-residue stable upto sign change, is a subgroup of 𝑆̃𝑛, called the column stabilizer and denoted by 𝐶𝑡, 

𝐶𝑡 ≃ 𝑆̃𝜆1′(1) ×⋅⋅⋅× 𝑆̃𝜆𝑞0
′(1) × 𝑆𝜆1′(2) ×⋅⋅⋅× 𝑆𝜆𝑞𝑟

′(2) 
where 𝜆𝑖

′(𝑗)is the length of the ith column in jth residue. 
Note 𝑅𝑡 = ∏ 𝑅𝑡

(𝑖)𝑟
𝑖=1  and 𝐶𝑡 = ∏ 𝐶𝑡

(𝑖)𝑟
𝑖=1 . 

Definition 2.9. For any tableau 𝑡, 𝜅𝑡 = ∏ ∑ 𝜖𝑖(𝜋∈𝐶𝑡
(𝑖)

𝑟
𝑖=1 𝜋)𝜋 and 𝐴𝑡 = 𝜅𝑡{𝑡}. 

To describe the structure of the ring 𝐷𝑓
(𝑥)(2𝑘) in terms of the eigenvalues of certain matrices. We begin by recalling several 

facts from the representation theory of the the hyper-octahedral group of type 𝐵𝑛. For each partition [𝜆] of m, let 𝑆[𝜆] denote the 
Specht module corresponding to [𝜆] and let 𝑑[𝜆] denote the dimension of 𝑆[𝜆]. 
Fact 1. There exists in group algebra of  the hyper-octahedral 𝑆̂𝑚 a unique minimal 2-sided ideal 𝑆̂𝑚of dimension �𝑑[𝜆]�

2 which can 
be written as direct sums 𝑆̂𝑚

[𝜆] = 𝐼1⨁⋯⨁𝐼𝑑[𝜆], 𝑆̂𝑚
[𝜆] = 𝐽1⨁⋯⨁𝐽𝑑[𝜆] where each 𝐼𝑖 is a left ideal of 𝑆̂𝑚 for which multiplication on the 

left gives a representation isomorphic to 𝑆[𝜆] and each 𝐽𝑖 is a right ideal of 𝑆̂𝑚 for which right multiplication is isomorphic to 𝑆[𝜆]. 
Fact 2. The ideal 𝑆̂𝑚

[𝜆] considered as a vector space of linear transformations of 𝑆[𝜆] is the full matrix algebra End(𝑆[𝜆]). 
Definition 2.10. Let 𝑇𝑚,𝑘(𝑥)[𝜆] be the (𝑝𝑑[𝜆])-by-(𝑝𝑑[𝜆]) matrix which is p-by-p blocks of 𝑑[𝜆]-by-𝑑[𝜆] matrices. The matrices in the 
each block are indexed by pairs of m, k signed partial l-factors with entries  < 𝑏, 𝑐 >, where 𝑏, 𝑐 ∈𝑃𝑚,𝑘 which is the Gram matrix 
of the 𝐻𝑓

(𝑥)(2𝑘). 
Let 𝑁[𝜆] and 𝑅[𝜆] denote the nullspace and range of 𝑇𝑚,𝑘(𝑥)[𝜆], respectively. Recall that if < 𝑏, 𝑐 >= 𝑥𝛾𝜎 then < 𝑐, 𝑏 >= 𝑥𝛾𝜎−1. 

So the matrix 𝑇𝑚,𝑘(𝑥)[𝜆] is symmetric. Choose a basis 𝑢(1), … ,𝑢(𝑛) for 𝑁[𝜆] and an orthonormal basis of eigenvectors 𝑣(1), … ,𝑣(𝑟) 
for the nonzero eigenvalues 𝜇(1), … , 𝜇(𝑟). 
Definition 2.11. For each ideal 𝐼𝑡 and each m, k signed partial l-factor d define 𝑉𝐿(𝐼𝑡 ,𝑑) to be the linear span of all 𝑐 ⊗  𝑑 ⊗ 𝑥, 
where c is arbitrary and 𝑥∈𝐼𝑡, i.e. x is a linear combination of elements for some 𝜎∈𝑆̃𝑚. 

Note that 𝑉𝐿(𝐼𝑡,𝑑) is a left ideal of 𝐻𝑓
(𝑥)(2𝑘). Define 𝑊𝐿(𝐼𝑡,𝑑) ⊂ 𝑉𝐿(𝐼𝑡,𝑑) to be the linear span of all ∑(𝑢)𝑐,𝑖 𝑐 ⊗  𝑑 ⊗ 𝐴𝑖,𝑡, where u 

is in 𝑁[𝜆] and where 𝐴𝑖,𝑡 is the basis element of 𝐼𝑡 corresponding to the basis element 𝐴𝑖 in 𝑆[𝜆]. i.e. the linear span of the set of all 
elements mapped to zero in 𝐻𝑓

(𝑥)(2𝑘). 
Proposition 2.12. Suppose 𝑣 = ∑(𝑣)𝑐,𝑖 𝑐 ⊗  𝑑 ⊗ 𝐴𝑖,𝑡 is an element of 𝑉𝐿(𝐼𝑡,𝑑). Let a, b be signed partial l-factors. For any 𝜎∈𝑆̃𝑚  

(𝑎 ⊗ 𝑏 ⊗ 𝜎)𝑣 = 𝑎 ⊗ 𝑑 ⊗ 𝜎 ��𝛾𝑗𝐴𝑗,𝑡�, 
where 𝛾𝑗 is the (b, j) entry of 𝑇𝑚,𝑘(𝑥)[𝜆](𝑣). 
Proof.  

(𝑎 ⊗ 𝑏 ⊗ 𝜎) ∘ ��(𝑣)𝑐,𝑖 𝑐 ⊗  𝑑 ⊗ 𝐴𝑖,𝑡� = 𝑎 ⊗ 𝑑 ⊗ 𝜎 ��(𝑣)𝑐,𝑖 < 𝑏, 𝑐 >  𝐴𝑖,𝑡� 
                                                                                        = 𝑎 ⊗ 𝑑 ⊗ 𝜎 �∑𝛾𝑗𝐴𝑗,𝑡�  

where  𝛾𝑗   is the coefficient of  𝐴𝑗,𝑡   in  ∑(𝑣)𝑐,𝑖 < 𝑏, 𝑐 >  𝐴𝑖,𝑡. By definition of 𝑇𝑚,𝑘(𝑥)[𝜆], the coefficient of 𝐴𝑗,𝑡 in < 𝑏, 𝑐 >  𝐴𝑖,𝑡 is the 
(b, j), (c, i) entry of 𝑇𝑚,𝑘(𝑥)[𝜆]. Thus 𝛾𝑗 is the (b, j) entry of 𝑇𝑚,𝑘(𝑥)[𝜆](𝑣). 
Proposition 2.13. (1) 𝐻𝑓

(𝑥)(2𝑘)𝑊𝐿(𝐼𝑡 ,𝑑) = 0. 
(2) 𝐻(𝑣) = 𝑉𝐿(𝐼𝑡,𝑑) for any v in 𝑉𝐿(𝐼𝑡 ,𝑑) not in 𝑊𝐿(𝐼𝑡,𝑑). 
(3) 𝑉𝐿(𝐼𝑡,𝑑) 𝑊𝐿(𝐼𝑡,𝑑)⁄  is irreducible as a left 𝐻𝑓

(𝑥)(2𝑘) module. 
Proof: Suppose w is a generating element of 𝑊𝐿(𝐼𝑡,𝑑). The 𝛾𝑗 appearing in Proposition 2.12 is all 0 for any 𝑎 ⊗ 𝑏 ⊗ 𝜎 by the defini-
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tion of 𝑊𝐿(𝐼𝑡,𝑑). The first equation follows. Suppose v is in 𝑉𝐿(𝐼𝑡,𝑑) but not in 𝑊𝐿(𝐼𝑡 ,𝑑). Choose a (b, j) such that �𝑇𝑚,𝑘(𝑥)[𝜆](𝑣)� is 
not zero. Then 𝑎 ⊗ 𝑏 ⊗ 𝜎(𝑣) is not zero as 𝛾𝑗 is not zero. Note that a and 𝜎 were arbitrary. The images under 𝜎∈𝑆̂𝑚 of any non-
zero vector in 𝐼𝑡 generate all of 𝐼𝑡 as 𝐼𝑡 is an irreducible 𝑆̂𝑚 module. Hence vectors of the form 

(𝑎 ⊗ 𝑏 ⊗ 𝜎) ∘ ��(𝑣)𝑐,𝑗 𝑐 ⊗  𝑑 ⊗ 𝐴𝑗,𝑡� 
generate all of 𝑉𝐿(𝐼𝑡 ,𝑑). This proves the second inequality. The third follows immediately from the first two. 
Let 𝑊𝐿

[𝜆] = ⨁𝑊𝐿(𝐼𝑡 ,𝑑). By Proposition 2.12, 𝑊𝐿
[𝜆] is a nilpotent left ideal of 𝐻𝑓

(𝑥)(2𝑘). Recall that 𝑆̂𝑚
[𝜆] can also be written as a direct 

sum of right ideals 𝐽1, … , 𝐽𝑑[𝜆]. For each 𝐽𝑡 and each signed partial l-factor a, let 𝑉𝑅(𝐽𝑡,𝑎) be the linear span of all 𝑎 ⊗ 𝑏 ⊗ 𝑥, where b 
is arbitrary and x is in 𝐽𝑡. Define 𝑊𝑅(𝐽𝑡,𝑎) ⊂ 𝑉𝑅(𝐽𝑡,𝑎) to be the linear span of all ∑(𝑢)𝑐,𝑖 𝑎 ⊗  𝑏 ⊗ 𝐴𝑗,𝑡 where 𝑢𝑡𝑇𝑚,𝑘(𝑥)[𝜆] = 0 and 𝐴𝑗,𝑡 
is as before. 
The same proofs used in Propositions 2.12 and 2.13 show that 

(1) 𝑊𝑅(𝐽𝑡,𝑎) ∘ (𝑐 ⊗ 𝑑 ⊗ 𝜎) = 0, 
(2) 𝑉𝑅(𝐽𝑡,𝑎) 𝑊𝑅(𝐽𝑡,𝑎)⁄  is an irreducible right 𝐻𝑓

(𝑥)(2𝑘) module. 
Define 𝑊𝑅

[𝜆] = ⨁𝑊𝑅(𝐽𝑡,𝑎) and define 𝑊 [𝜆] to be the nilpotent 2-sided ideal 𝑊 [𝜆] = 𝑊𝐿
[𝜆] + 𝑊𝑅

[𝜆]. 
Definition 2.14. Define 𝐷[𝜆] to be the 2-sided ideal of 𝐻𝑓

(𝑥)(2𝑘) given by the linear span of all vectors 𝑎 ⊗ 𝑏 ⊗ 𝑥, where a and b are 
arbitrary and 𝑥∈𝑆̂𝑚

[𝜆]. 
Note that 𝐷[𝜆] to be the 2-sided ideal of 𝐻𝑓

(𝑥)(2𝑘). Note also that 𝐻𝑓
(𝑥)(2𝑘) is the direct sum of the 𝐷[𝜆]. 

Proposition 2.15. 𝐷[𝜆] 𝑊 [𝜆]⁄  is  canonically isomorphic to the full matrix ring End(R[𝜆]). Recall that R[𝜆] is the range of  𝑇𝑚,𝑘(𝑥)[𝜆]. 
Proof: Given eigenvectors 𝑣(𝑟) and 𝑣(𝑠) define  

𝑍(𝑣(𝑟), 𝑣(𝑠)) = (𝜇(𝑟)𝜇(𝑠))−1 ∑(𝑣(𝑟))𝑎,𝑖(𝑣(𝑠))𝑏,𝑗 𝑎 ⊗  𝑏 ⊗ 𝑥𝑖𝑦𝑗. 
Taking the product of 𝑍(𝑣(𝑟),𝑣(𝑠)) and 𝑍(𝑣(𝑡),𝑣(𝑢)) we obtain 

𝑍�𝑣(𝑟),𝑣(𝑠)�𝑍�𝑣(𝑡),𝑣(𝑢)� = �𝜇(𝑟)𝜇(𝑠)𝜇(𝑡)𝜇(𝑢)�
−1
��𝑣(𝑟)�

𝑎,𝑖
(𝑣(𝑢)𝑑,𝑙 𝑎 ⊗  𝑑 ⊗ �𝑣(𝑠)�

𝑏,𝑗
�𝑣(𝑡)�

𝑐,𝑘
� 𝑥𝑖𝑦𝑗 < 𝑏, 𝑐 >  𝑥𝑘𝑦𝑙�  

= �𝜇(𝑟)𝜇(𝑠)𝜇(𝑡)𝜇(𝑢)�
−1
��𝑣(𝑟)�

𝑎,𝑖
(𝑣(𝑢)𝑑,𝑙 𝑎 ⊗  𝑑 ⊗ 𝑥𝑖𝑦𝑗 ��(𝑣(𝑠))𝑏,𝑗 ��(𝑣(𝑡))𝑐,𝑘 < 𝑏, 𝑐 >  𝑥𝑘��𝑦𝑙 

Now ∑(𝑣(𝑡)𝑐,𝑘 < 𝑏, 𝑐 >  𝑥𝑘 = ∑𝛾𝑟𝑥𝑟, where 𝛾𝑟 is the b, r coefficient of �𝑇𝑚,𝑘(𝑥)[𝜆]�(𝑣(𝑡)). In this case, 𝛾𝑟 = 𝜇(𝑡)(𝑣(𝑡))𝑏,𝑟 as 𝑣(𝑡) is an 
eigenvector with eigenvalue 𝜇(𝑡). So, 

𝑥𝑖𝑦𝑗 ��(𝑣(𝑠))𝑏,𝑗 ��(𝑣(𝑡))𝑐,𝑘 < 𝑏, 𝑐 >  𝑥𝑘��𝑦𝑙 = 𝜇(𝑡) ��𝑣(𝑠)�
𝑏,𝑗
�𝑣(𝑡)�

𝑏,𝑟
� 𝑥𝑖𝑦𝑗𝑥𝑟𝑦𝑙� 

But recall that 
𝑥𝑖𝑦𝑗𝑥𝑟𝑦𝑙 = �𝑥𝑖𝑦𝑙      if  𝑗 = 𝑟         

0         otherwise    
 

Using this fact in the previous equation we have 
𝑥𝑖𝑦𝑗�∑(𝑣(𝑠))𝑏,𝑗 �∑(𝑣(𝑡))𝑐,𝑘 < 𝑏, 𝑐 >  𝑥𝑘��𝑦𝑙 = 𝜇(𝑡)𝑥𝑖𝑦𝑙 �∑�𝑣(𝑠)�

𝑏,𝑗
�𝑣(𝑡)�

𝑏,𝑗
�. 

By the orthonormality of the 𝑣(𝑖) we have ∑�𝑣(𝑠)�
𝑏,𝑗
�𝑣(𝑡)�

𝑏,𝑗
= δ𝑠 ,𝑡, where δ𝑠,𝑡 is the Kronecker delta. Substituting above we obtain 

𝑍�𝑣(𝑟),𝑣(𝑠)�𝑍�𝑣(𝑡),𝑣(𝑢)� = δ𝑠 ,𝑡𝑍�𝑣(𝑟), 𝑣(𝑢)�, which shows that the subspace of 𝐷[𝜆] spanned by the 𝑍�𝑣(𝑟),𝑣(𝑠)� is isomorphic to 
End(R[𝜆]). 
The ideal 𝐷[𝜆] = 𝑉𝑚,𝑘  ⊗ 𝑉𝑚,𝑘⊗ 𝑆̂𝑚

[𝜆]  is isomorphic as a vector space to �𝑉𝑚,𝑘  ⊗ 𝑆[𝜆]�⊗�𝑉𝑚,𝑘  ⊗ 𝑆[𝜆]� via the linear map f sending 
(𝑐 ⊗ 𝐴𝑖)⊗�𝑑 ⊗ 𝐴𝑗� to 𝑐 ⊗ 𝑑 ⊗ 𝑥𝑖𝑦𝑗 . Writing 𝑉𝑚,𝑘  ⊗ 𝑆[𝜆] as 𝑁[𝜆]⨁𝑅[𝜆] we have, from Propositions 2.12, 2.13 and 2.15, that 

(A) 𝑓�𝑁[𝜆] ⊗ �𝑉𝑚,𝑘  ⊗ 𝑆[𝜆]�+ �𝑉𝑚,𝑘  ⊗ 𝑆[𝜆]�⊗𝑁[𝜆]� is contained in the radical of 𝑆𝑓
(𝑥)(2𝑘),  

(B) 𝑓�𝑅[𝜆] ⊗ 𝑅[𝜆]� is a full matrix ring. 
The next theorem follows immediately from (A) and (B). 
Theorem 2.16. With notation as above: 

1. Let 𝑊 [𝜆] = 𝑓�N ⊗ �𝑉𝑚,𝑘  ⊗ 𝑆[𝜆]�+ �𝑉𝑚,𝑘  ⊗ 𝑆[𝜆]� ⊗ N�. Then 𝑊 [𝜆] is the intersection of the radical of 𝐻𝑓
(𝑥)(2𝑘) with 𝐷[𝜆]. 

2. 𝐷[𝜆] 𝑊 [𝜆]⁄  is a full matrix ring which is canonically isomorphic to End(R[𝜆]).  
 
Conclusion 
The irreducible representations of 𝑆𝑓

(𝑥) are indexed by partitions of m. Each such representations gives an irreducible representa-
tion of 𝑆𝑓

(𝑥)(2𝑘)/ 𝑆𝑓
(𝑥)(2𝑘+ 2). By the results in the above section, we get 𝑅𝑅𝑅(𝑆𝑓

(𝑥)(2𝑘))/𝑅𝑅𝑅( 𝑆𝑓
(𝑥)(2𝑘+ 2)) =  ∑𝑊 [𝜆]. This shows 

that the dimensions of the radical of the various 𝑆𝑓
(𝑥)(2𝑘) are determined by the nullspaces of  𝑇𝑚,𝑘′(𝑥)[𝜆] for 𝑘′ ≥ 𝑘. 
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