
International Journal of Advancements in Research & Technology, Volume 2, Issue4, April-2013 235
ISSN 2278-7763

Copyright © 2013 SciResPub.

Column-Oriented
Databases to Gain High
Performance for Data
Warehouse System

By

Nirmal Lodhi, PHD Research Scholar –
Bhagwant University,
Email : - NirmalrbSingh@gmail.com
Ram Babu, PHD Research Scholar –
Bhagwant University,
Email : - singh.rambabu@gmail.com
R.C. Verma, Asst. Professor IMT Faridabad,
Email: - rcvranchi5@yahoo.co.in
Rajesh Pandey, PHD Research Scholar –
Bhagwant University,
Email : - rajesh.fbd@gmail.com

 Abstract:-

Column-oriented database systems, also known as
column-stores, have an important demand in the
past few years. Basically, it is about storing each
database column separately so that the attributes
belonging to the same column would be stored
contiguously, compressed and densely-packed in
the disk. This method has advantages in reading
the records faster as compared to classical row-
stores in which every row are stored one after
another in the disk. These databases are more
suitable for data warehousing system to get
analysis done faster as data is stored in columnar
form. Indexes are much faster in column oriented
databases which results in faster data retrieval and
hence data analysis. This is an alternate database
technology over row oriented database systems.

There are two obvious ways to map database
tables onto a one dimensional interface: store the

table row-by-row or store the table column-by-
column. The row-by-row approach keeps all
information about an entity together. In the
customer example above, it will store all
information about the first customer, and then all
information about the second customer, etc. The
column-by-column approach keeps all attribute
information together: the entire customer names
will be stored consecutively, then all of the
customer addresses, etc. Both approaches are
reasonable designs and typically a choice is made
based on performance expectations. If the expected
workload tends to access data on the granularity of
an entity (e.g., find a customer, add a customer,
delete a customer), then the row-by-row storage is
preferable since all of the needed information will
be stored together.

On the other hand, if the expected workload tends
to read per query only a few attributes from many
records (e.g., a query that finds the most common
e-mail address domain), then column-by-column
storage is preferable since irrelevant attributes for a
particular query do not have to be accessed
(current storage devices cannot be read with fine
enough granularity to read only one attribute from
a row. The vast majority of commercial database
systems, including the three most popular
database software systems (Oracle, IBM DB2, and
Microsoft SQL Server); choose the row-by-row
storage layout. The design implemented by these
products descended from research developed in
the 1970s. The design was optimized for the most
common database application at the time: business
transactional data processing. The goal of these
applications was to automate mission-critical
business tasks. For example, a bank might want to
use a database to store information about its
branches and its customers and its accounts.
Typical uses of this database might be to find the
balance of a particular customer’s account or to
transfer $100 from customer A to customer B in
one single atomic transaction. These queries
commonly access data on the granularity an entity
(find a customer, or an account, or branch
information; add a new customer, account, or
branch). Given this workload, the row-by-row
storage layout was chosen for these systems.

Starting in around the 1990s, however, businesses
started to use their databases to ask more detailed
analytical queries. For example, the bank might
want to analyze all of the data to find associations
between customer attributes and heightened loan

International Journal of Advancements in Research & Technology, Volume 2, Issue4, April-2013 236
ISSN 2278-7763

Copyright © 2013 SciResPub.

risks. Or they might want to search through the
data to find customers who should receive VIP
treatment. Thus, on top of using databases to
automate their business processes, businesses
started to want to use databases to help with some
of the decision making and planning. However,
these new uses for databases posed two problems.
First, these analytical queries tended to be longer
running queries, and the shorter transactional
write queries would have to block until the
analytical queries finished (to avoid different
queries reading an inconsistent database state).
Second, these analytical queries did not generally
process the same data as the transactional queries,
since both operational and historical data (from
perhaps multiple applications within the
enterprise) are relevant for decision making. Thus,
businesses tended to create two databases (rather
than a single one); the transactional queries would
go to the transactional database and the analytical
queries would go to what are now called data
warehouses. This business practice of creating a
separate data warehouse for analytical queries is
becoming increasingly common;
In fact today data warehouses comprise $3.98
billion [65] of the $14.6 billion database market [53]
(27%) and are growing at a rate of 10.3% annually
[65].

Keywords: Column, database, performance,
analytics, data warehouse, properties, attribute,
data management, write oriented, implementation,
implications, entity focused.

1. PROPERTIES OF ANALYTIC APPLICATIONS

The natures of the queries to data warehouses are
different from the queries to transactional
databases. Queries tend to be:

• LESS PREDICTABLE. In the transactional
world, since databases are used to automate
business tasks, queries tend to be initiated by a
specific set of predefined actions. As a result, the
basic structure of the queries used to implement
these predefined actions is coded in advance, with
variables filled in at run-time. In contrast, queries
in the data warehouse tend to be more exploratory
in nature. They can be initiated by analysts who
create queries in an ad-hoc, iterative fashion.

• LONGER LASTING. Transactional queries tend
to be short, simple queries (“add a customer”,
“find a balance”, “transfer $50 from account A to
account B”). In contrast, data warehouse queries,
since they are more analytical in nature, tend to
have to read more data to yield information about
data in aggregate rather than individual records.
For example, a query that tries to find correlations
between customer attributes and loan risks needs
to search though many records of customer and
loan history in order to produce meaningful
correlations.

• MORE READ-ORIENTED THAN WRITE-
ORIENTED. Analysis is naturally a read-oriented
endeavor. Typically data is written to the data
warehouse in batches (for example, data collected
during the day can be sent to the data warehouse
from the enterprise transactional databases and
batch-written over-night), followed by many read
only queries. Occasionally data will be temporarily
written for “what-if” analyses, but on the whole,
most queries will be read-only.

• ATTRIBUTE-FOCUSED RATHER THAN
ENTITY-FOCUSED. Data warehouse queries
typically do not query individual entities; rather
they tend to read multiple entities and summarize
or aggregate them (for example, queries like “what
is the average customer balance” are more
common than “what is the balance of customer A’s
account”). Further, they tend to focus on only a
few attributes at a time (in the previous example,
the balance attribute) rather than all attributes.

2. IMPLICATIONS ON DATA MANAGEMENT

As a consequence of these query characteristics,
storing data row-by-row is no longer the obvious
choice; in fact, especially as a result of the latter
two characteristics, the column-by-column storage
layout can be better. The third query characteristic
favors a column-oriented layout since it alleviates
the oft-cited disadvantage of storing data in
columns: poor write performance. In particular,
individual write queries can perform poorly if data
is 18 laid out column-by-column, since, for
example, if a new record is inserted into the
database, the new record must be partitioned into
its component attributes and each attribute written
independently. However, batch-writes do not
perform as poorly since attributes from multiple

International Journal of Advancements in Research & Technology, Volume 2, Issue4, April-2013 237
ISSN 2278-7763

Copyright © 2013 SciResPub.

records can be written together in a single action.
On the other hand, read queries (especially
attribute-focused queries from the fourth
characteristic above) tend to favor the column-
oriented layout since only those attributes accessed
by a query need to be read, and thus this layout
tends to be more I/O efficient. Thus, since data
warehouses tend to have more read queries than
write queries, the read queries are attribute
focused, and the write queries can be done in
batch, the column-oriented layout is favored.
 Surprisingly, the major players in the data
warehouse commercial arena (Oracle, DB2, SQL
Server, and Teradata) store data row-by-row (in
this dissertation, they will be referred to as row-
stores”). Although speculation as to why this is the
case is beyond the scope of this dissertation, this is
likely due to the fact that these databases have
historically focused on the larger transactional
database market and wish to maintain a single line
of code for all of their database software [64].
Similarly, database research has tended to focus on
the row-by-row data layout, again due to the field
being historically transitionally focused.
Consequently, relatively little research has been
performed on the column-by-column storage
layout (“column-stores”).

3. EVOLUTION

In the evolution of computing science, three
generations of database technology are identified
since the 60’s till nowadays. The first generation
started in the 60’s and its main purpose was to
enable disparate but related application to share
data otherwise than passing files between them.
The publishing of “A Relational Model of Data for
Large Shared Data Banks” by E. F. Codd marked
the beginning of the second generation of DBMS
(database management systems) technology.
Codd’s premise was that data had to be managed
in structures developed according to the
mathematical set theory. He stated that data had to
be organized into tuples, as attributes and
relations.
A third generation began to emerge in the late 90’s
and now is going to replace second-generation
products. Multi-core processors became common,
64-bit technology is used largely for database
servers, memory is cheaper and disks are cheaper

and faster than ever before. A recent IDC study
examines emerging trends in DBMS technology as
elements of the third generation of such
technology. It considers that, at the current rate of
development and adoption, the following
innovations will be achieved in the next five years:

 Most data warehouses will be stored in a
columnar fashion;

 Most OLTP (On-Line Transaction
Processing) databases will either be
augmented by an in-memory database or
reside entirely in memory;

 Most large-scale database servers will
achieve horizontal scalability through
clustering;

 Many data collection and reporting
problems will be solved with databases
that will have no formal schema at all.

This study examines how some innovations in
database technology field are implemented more
and more. Most of these technologies have been
developed for at least ten years, but they are only
now becoming widely adopted. As Carl Olofson,
research vice president for database management
and data integration software research at IDC,
said, “many of these new systems encourage you
to forget disk-based partitioning schemes, indexing
strategies and buffer management, and embrace a
world of large-memory models, many processors
with many cores,
Clustered servers, and highly compressed column
wise storage”. From the innovations that the study
considers that will be achieved in the next years,
this paper presents the columnar data storage.

4. COLUMN-ORIENTED DBMS

A column-oriented DBMS is a database
management system (DBMS) that stores data tables
as sections of columns of data rather than as rows
of data, like most relational DBMSs. This has
advantages for data warehouses, customer
relationship management (CRM) systems, and
library card catalogs, and other ad-hoc inquiry
systems where aggregates are computed over large
numbers of similar data items.

It is possible to achieve some of the benefits of
column-oriented and row-oriented organization

International Journal of Advancements in Research & Technology, Volume 2, Issue4, April-2013 238
ISSN 2278-7763

Copyright © 2013 SciResPub.

with any DBMSs. By denoting one as column-
oriented, we are referring to both the ease of
expression of a column-oriented structure and the
focus on optimizations for column-oriented
workloads. This approach is in contrast to row-
oriented or row store databases and with
correlation databases, which use a value-based
storage structure.

A relational database management system must
show its data as two-dimensional tables, of
columns and rows, but store it as one-dimensional
strings

A row-oriented database serializes all of the values
in a row together, then the values in the next row,
and so on.

A column-oriented database serializes all of the
values of a column together, then the values of the
next column, and so on.

5. BASIC PROPERTIES OF A COLUMN-
ORIENTED DATABASE

In highly replicated distributed systems, there is
often a great emphasis on the durability of data
and not just persistence. Durability requires that
writes from a particular operation are stored in
such a way that if an exception were to occur, that
data can be recovered. The copies might be stored
in memory or on disk, but they are typically
written to a commit log. Durability can be achieved
through replication as well, while persistence is
focused on storing the data on disk for long term
storage. Some column-oriented data stores, such as
Dynamo, support pluggable storage engine
architecture for persistence .Other data stores like
Big Table and Cassandra utilize their own storage
engine; both use SSTables.

Querying within a column-oriented data store is
often limited to key only lookups, which are
provided by each data store’s own API. There is no
query language, so data access is totally
programmatic. Dynamo provides primary key
only access, where every key in the Dynamo
instance is unique since Dynamo does not provide
a. Other data stores provide namespaces, such as
column families and key spaces. These must be
specified when querying data. To filter the data,
some data stores such as Big Table allow for
regular expressions to be passed via the query API

call to reduce the number of rows that will be
returned. Versioning techniques are critical to the
concurrency model of column-oriented data stores.
Updates within a row are commonly implemented
as atomic operations with a timestamp used to
denote the version. In some cases, the latest
timestamp is the true version. Since there is no
notion of isolation within column-oriented data
stores, it is entirely possible that the latest
timestamp is not the true version. In these
situations, it is up to the client to resolve 13 version
conflicts. In Dynamo terminology, this problem is
referred to as semantic reconciliation. These
reconciliation techniques are needed because there
is generally no notion of a transaction in column-
oriented data stores.

Security and access control is not a strong focus
with column-oriented databases. This is an area
where relational databases are much more robust.
Dynamo, for example, expects to operate in a
trusted and provides no security. Big Table, on the
other hand, does support access control lists for
column-families, which can be used to limit user
capabilities. These access controls pale in
comparison to row-level security, label based
access control, and role based access control
mechanisms supported by many mainstream
relational databases.
In general, most popular column-oriented data
stores place a lesser value on consistency and
integrity compared to fault tolerance and low
latency response. The alternative consistency
model that these data stores focus on is called
eventual consistency. To achieve high availability,
replication amongst nodes is utilized extensively.
Another wrinkle with respect to the integrity of
column-oriented data stores is the fact that there is
little or no support for types. Values are stored as
uninterrupted byte strings, so it is up client
applications in order to maintain consistent typing
of values.
Support for recovery is effectively handled by
using a commit log. Write operations are written to
the commit log after finishing successfully.
Without transactions, there is little support for
rolling back operations and it is possible that a
failure can occur during units of work. The
primary goal of the commit log is to aid in
providing durable storage for operations.
Cassandra and Big Table log all writes to the
commit log prior to updating their in-memory data
structures or physical files.

International Journal of Advancements in Research & Technology, Volume 2, Issue4, April-2013 239
ISSN 2278-7763

Copyright © 2013 SciResPub.

6. COLUMN-ORIENTED DATA MODEL
IMPLEMENTATION

The column-oriented data model lends itself quite
well to handling this sort of semi-structured data.
Utilizing Cassandra's data model will provide a
nested column-family structure for us to store our
data. One choice for the logical data model would
be to create a column family for each host, keyed
by the host's IP address for their primary network
interface. Each host would need a column key for
hostname, a description of that host, and the MAC
address for the primary physical network interface.
This column family yield a list of the distinct hosts
for which log messages will be stored.
Another column family could be used to store each
log message for each host. Our key for this column
family will be the concatenation of host IP address
and the timestamp on the log 30 message. In this
case, there is really no use for versioning each of
the log messages, so a new instance of this column
family will be created for each log message. For
each message, we'll have column keys for every
part that that will be parsed out of the original
rsyslog formatted message. One key for each
rsyslog property will be used along with a key for
each part of the IPtables message.
Each protocol will have a slightly different list of
keys. Cassandra supports this problem nicely by
allowing us to add any number of column keys to
a column family. This is in contrast with a
relational data model where we would have to
declare all possible message fields before hand, but
only a subset of fields would be needed for each
message. Given all the above requirements, the
physical data model would be implemented as
follows:
{

“host_ip”: {
HOSTNAME:
DESCRIPTION:
MAC:

}
}

{

 “host_ip”+”timestamp” {
MSG:
FROMHOST-IP:
IN:

OUT:
MAC:
SRC:
DST:
LEN:
TOS:
PREC:
TTL:
ID:
PROTO:
SPT:
DPT:
WINDOW:
RES:
FLAG:
}

}

7. WHY COLUMN-ORIENTED DATABASES
The volume of data in an organization is growing
rapidly. So does the number of users who need to
access and analyse this data. IT systems are used
more and more intensive, in order to answer more
numerous and complex demands needed to make
critical business decisions. Data analysis and
business reporting need more and more resources.
Therefore, better, faster and more effective
alternatives have to be found. Business Intelligence
(BI) systems are proper solutions for solving the
problems above. Decision-makers need a better
access to information, in order to make accurate
and fast decisions in a permanent changing
environment. As part of a BI system, reporting has
become critical for a company’s business.

Years ago, reports prepared by analysts were
addressed only to the company’s executive
management. Nowadays, reporting has become an
instrument addressed to decision-makers on all
organizational levels, aiming to improve the
company’s activity, to ensure decision quality,
control costs and prevent losses.

As already mentioned, the volume of data
acquired into a company is growing permanently,
because business operations expand and, on the
other hand, the company has to interact with more
sources of data and keep more data online. More
than ever before, users need a faster and more

International Journal of Advancements in Research & Technology, Volume 2, Issue4, April-2013 240
ISSN 2278-7763

Copyright © 2013 SciResPub.

convenient access to historical data for analysing
purposes. Enterprise data warehouses are a
necessity for the companies that want to stay
competitive and successful. More and more reports
and adhoc queries are requested to support the
decision making process. At the same time,
Companies have to run audit reports on their
operational and historical data in order to ensure
compliance.

These new demands add more pressures upon IT
departments. More and more hardware resources
are needed in order to store and manage an
increasing volume of data. The increasing number
of queries needs larger amounts of CPU cycles, so
more processors, having a higher performance,
must be added to the system.

The size of the data warehouses storing this data is
increasing permanently, becoming larger and
larger. While five years ago the largest data
warehouses were around 100 terabytes in size,
now a data warehouse size at the petabyte level is
no longer unusual. The challenge is to maintain the
performance of these repositories, which are built,
mostly, as relational structures, storing data in a
row-oriented manner. The relational model is a
flexible one and it has proven its capacity to
support both transactional and analytical
processing. But, as the size and complexity of data
warehouses have increased, a new approach was
proposed as an alternative on the row oriented
approach, namely storing data in a column-
oriented manner. Unlike the row oriented
approach, where the data storage layer contains
records (rows), in a column oriented system it
contains columns. This is a simple model, more
adequate for data repositories used by analytical
applications, with a wide range of users and query
types.

Researches indicate that the size of the largest data
warehouse doubles every three years. Growth
rates of system hardware performance are being
overrun by the need for analytical performance.
The volume of data needed to be stored is growing
due to more and various requirements for
reporting and analytics, from more and more
business areas, increased time periods for data
retention, a greater number of observations loaded
in data warehouses and a greater number of
attributes for each observation. This is true if
taking into consideration only structured data. But
nowadays, organizations collect a larger and larger

volume of unstructured data, as images, audio and
video files, which need a much greater storing
space than structured data.

Row-oriented databases have been designed for
transactional processing. For example, in the
account management system of a bank, all
attributes of an account are stored in a single row.
Such an approach is not optimal in an analytical
system, where a lot of read operations are executed
in order to access a small number of attributes
from a vast volume of data. In a row-oriented
architecture, system performance, users’ access
and data storage become major issues very
quickly. As they are designed to retrieve all
elements from several rows, row oriented
databases are not well suited for large scale
processing, as needed in an analytical
environment. As opposed to transactional queries,
analytical queries typically scan all the database’s
records, but process only a few elements of them.
In a column-oriented database all instances of a
single data element, such as account number, are
stored together so they can be accessed as a unit.
Therefore, column oriented databases are more
efficient in an analytical environment, where
queries need to read all instances of a small
number of data elements.

System performance enhances spectacularly in a
column-oriented solution, because queries search
only few attributes, and they will not scan the
attributes that are irrelevant for those queries.
Requested data is found faster, because less sort
operations have to be performed.

A typical feature of evolved BI systems is their
capability to make strategic business analyses, to
process complex events and to drill deeply into
data. As the volume of data becomes impressive
and performance demands required by users are
likely to outpace, it is obviously that row-oriented
relational database management systems stopped
to be the solution for implementing a BI system
having powerful analytical and predictive
capabilities. A new model tends to come into
prominence as an alternative on developing
analytical databases, namely one that manages
data by columns.

A column-oriented DBMS stores data in a
columnar manner and not by rows, as classic
DBMS do. In the columnar approach, each
attribute is stored in a separate table, so successive

International Journal of Advancements in Research & Technology, Volume 2, Issue4, April-2013 241
ISSN 2278-7763

Copyright © 2013 SciResPub.

values of that attribute are stored consecutively.
This is an important advantage for data
warehouses where, generally, information is
obtained by aggregating a vast volume of data.
Therefore, operations as MIN, MAX, SUM,
COUNT, AVG and so forth are performed very
quickly.

When the tables of a database are designed, their
columns are established. The number of rows will
be determined when the tables will be populated
with data. In a row oriented database, data is
stored in a tabular manner. The data items of a row
are stored one after another; rows are also stored
one after another, so the last item of a row is
followed by the first item of the next row.

In a column-oriented database, the data items of a
column are stored one after another, and also are
the columns; so the last item of a column is
followed by the first item of the next column.

8. BENEFITS
Comparisons between row-oriented and column-
oriented data layouts are typically concerned with
the efficiency of hard-disk access for a given
workload, as seek time is incredibly long
compared to the other delays in computers.
Sometimes, reading a megabyte of sequentially
stored data takes no more time than one random
access.[3] Further, because seek time is improving
much more slowly than CPU power (see Moore's
Law), this focus will likely continue on systems
that rely on hard disks for storage. Following is a
set of oversimplified observations which attempt
to paint a picture of the trade-offs between
column- and row-oriented organizations Unless, of
course, the application can be reasonably assured
to fit most/all data into memory, in which case
huge optimizations are available from in-memory
database systems.

1. Column-oriented organizations are more
efficient when an aggregate needs to be
computed over many rows but only for a
notably smaller subset of all columns of
data, because reading that smaller subset
of data can be faster than reading all data.

2. Column-oriented organizations are more
efficient when new values of a column are
supplied for all rows at once, because that
column data can be written efficiently and
replace old column data without touching
any other columns for the rows.

3. Row-oriented organizations are more
efficient when many columns of a single
row are required at the same time, and
when row-size is relatively small, as the
entire row can be retrieved with a single
disk seek.

4. Row-oriented organizations are more
efficient when writing a new row if all of
the column data is supplied at the same
time; as the entire row can be written with
a single disk seek.

5. Advantage of column oriented databases
over row oriented databases is in the
efficiency of hard- disk access

9. EXAMPLES OF COLUMN-ORIENTED
DATABASE SYSTEMS

SYBASE IQ: Sybase IQ is a high-performance
decision support server designed specifically for
data warehousing. It is a column oriented
relational database that was built, from the very
beginning, for analytics and BI applications, in
order to assist reporting and decision support
systems. This fact offers it several advantages
within a data warehousing environment, including
performance, scalability and cost of ownership
benefits.

VERTICA: Vertica Analytic Database is a DBMS
that can help in meeting these needs. It is a
column-oriented database that was built in order
to combine both column store and execution, as
opposed to other solutions that are column-
oriented only from storage point of view.
Designed by Michael Stonebraker, it incorporates a
combination of architectural elements – many of
them which have been used before in other
contexts – to deliver a high-performance and low-
cost data warehouse solution that is more than the
sum of its elements.

10. CONCLUSIONS:
For applications that write and update many data
(OLTP systems), a row-oriented approach is a
proper solution. In such architecture, all the
attributes of a record are placed contiguously in
storage and are pushed out to disk through a

International Journal of Advancements in Research & Technology, Volume 2, Issue4, April-2013 242
ISSN 2278-7763

Copyright © 2013 SciResPub.

single write operation. An OLTP system is a write
optimized one, having a high writing performance.
In contrast, an OLAP system, mainly based on ad-
hoc queries performed against large volumes of
data, has to be read optimized. The repository of
such a system is a data warehouse. Periodically
(daily, weekly, or monthly, depending upon how
current data must be), the data warehouse is load
massively. Ad-hoc queries are then performed in
order to analyse data and discover the right
information for the decision making process. And
for analytical applications, that read much more
than they write a column-oriented approach is a
better solution.
Nowadays, data warehouses have to answer more
and more ad-hoc queries, from a greater number of
users which need to analyse quickly larger
volumes of data. Columnar database technology
inverts the database’s structure and stores each
attribute separately, fact that eliminates the
wasteful retrieval as queries are performed.
On the other hand, much more data can be loaded
in memory, and processing data into memory is
much faster. Column-oriented databases provide
faster answers, because they read only the columns
requested by users’ queries, since row-oriented
databases must read all rows and columns in a
table. Data in a column oriented database can be
better compressed than those in a row-oriented
database, because values in a column are much
more homogenous than in a row. The compression
of a column-oriented database may reduce its size
up to 20 times, this thing providing a higher
performance and reduced storage costs. Because of
a greater compression rate, a column-oriented
implementation stores more data into a block and
therefore more data into a read operation. Since
locating the right block to read and reading it are
two of the most expensive computer operations,
it’s obviously that a column-oriented approach is
the best solution for a data warehouse used by a
Business Intelligence system developed for
analytical purposes.

11. ACKNOWLEDGMENT

I thanks Dr. A.K. Yadav to encourage to research
and write on Column based database and its
importance when we deal in large database like

data warehouse system used for data analysis and
reporting.

References:-

1. S.G.Yaman on Introduction to Column-
Oriented Database Systems at cs.helsinki.fi

2. A Review of Column-oriented Data stores
by Zach Pratt at attackofzach.com

3. Column-Oriented Databases, an
Alternative for Analytical Environment by
Gheorghe MATEI at dbjournal.ro

4. wikipedia.org and wikimedia.org

