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Abstract 
Multilayer feed-forward neural network trained with conventional gradient descent method of generalized delta learning rule is 
not conveniently exhibit the generalized behavior for the pattern mapping task or in pattern classification. This inadequacy of 
the generalized delta learning rule also exhibits in its conjugate descent or second derivative. The objective of this study is to 
analyze the performance of feed forward neural network for performing the generalized pattern classification task for the auto-
mated word recognition. The performance of feed forward neural network for this generalization is evaluated with gradient 
descent radial basis function feed-forward neural network architecture.  Here in this paper we are proposing a novel method to 
improve the performance of Multi Layer feed-forward neural network for generalized pattern recognition task using second 
order gradient descent of Radial Basis Function i.e. Radial Basis Function and its Conjugate Descent.  
The results of 1800 experiments indicate that the Multi Layer feed-forward neural network performs accurately and exhaustive-
ly with imposed Radial Basis Function and its Conjugate Descent. The results indicate that the performance of the Multi Layer 
feed-forward neural network is much efficient and improved convergence with the Radial basis function network and from its 
Conjugate Descent. 
 
Keywords : Descent Gradient, Radial Basis Function, Generalized pattern classification, Pattern Recognition, Multi layer feed 
forward neural networks. 

1 INTRODUCTION                                                                     
  A multi-layer feed forward neural network exhibits the good 
generalization and good approximation capabilities. The gen-
eralized behavior of the multilayer feed forward neural net-
work shows the interpolative behavior for the given test pat-
tern. The conventional learning rule like backpropagation or 
generalized delta learning rule trained the multilayer feed 
forward neural network to capture generalized implicit rela-
tionship between input and output pattern pairs those are 
used during the training process. There are various applica-
tions like pattern mapping, pattern classification, optimization 
and estimation where the efficient learning by the back-
propagation algorithm is used to train the multilayer feed 
forward neural network for many practical applications. The 
back-propagation algorithm calculates the weight changes of 
artificial neural networks, and a common approach is to use a 
two-term algorithm consisting of a learning rate (LR) and a 
momentum factor (MF). The major drawbacks of the two-term 
BP learning algorithm are the problems of local minima and 
slow convergence speeds, which limit the scope for real-time 
applications. A local minimum is defined as a point such that 
all points in a neighborhood have an error value greater than 
or equal to the error value in that point [1, 2]. 
It is found that the trained neural networks have been used in 
a number of applications such as pattern mapping & classifica-
tion [3, 4, 5], non-linear optimization [6], remote sensing [7], 

dynamic modeling and medicine [8]. The increasing populari-
ty of the neural networks is partly due to their ability to learn 
and generalization. Particularly, feed forward neural network 
makes no prior assumption about the statistics of input data 
and can construct complex decision boundaries [9]. This prop-
erty makes neural networks, an attractive tool to many pattern 
classification problems such as hand written curve scripts [10, 
11, 12].  
In a feed forward neural network the nodes are organized into 
layers; each "stacked" on each other. The neural network con-
sists of an input layer of nodes, one or more hidden layers, 
and an output layer [13]. Each node in the layer has one corre-
sponding node in the next layer, thus creating the stacking 
effect. The input layer's nodes consists with output functions 
those deliver data to the first hidden layers nodes. The hidden 
layer(s) is the processing layer, where all of the actual compu-
tation takes place. Each node in a hidden layer computes a 
sum based on its input from the previous layer (either the in-
put layer or another hidden layer). The sum is then "compact-
ed" by an output function (sigmoid function), which changes 
the sum down to more a limited and manageable range. The 
output sum from the hidden layers is passed to the output 
layer, which exhibits the final network result. Feed-forward 
networks may contain any number of hidden layers, but only 
one input and one output layer. A single-hidden layer net-
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work can learn any set of training data that a network with 
multiple layers can learn [14]. However, a single hidden layer 
may take longer to train. 
In neural networks, the choice of learning algorithm, network 
topology, weight and bias initialization and input pattern rep-
resentation are important factors for the network performance 
in order to accomplish the learning. In particular, the choice of 
learning algorithm determines the rate of convergence, com-
putational cost and the optimality of the solution. The multi 
layer feed forward is one of the most widely used neural net-
work architecture. The learning process for the feed forward 
network can consider as the minimization of the specified er-
ror (E) that depends on all the free parameters of the network. 
The most commonly adopted error function is the least mean 
square error. In the feed forward neural network with J pro-
cessing units in the output layer and for the 

thl pattern, the 
LMS is given by; 

 
                           (1.1) 
 

     
   
Here 1=l to L (total number of input-output pattern pairs of 
training set) and 

l
jd
 and 

l
jy
 are the desired and actual out-

puts corresponding to the lth input pattern.  
Hence, due to the non-linear nature of E, the minimization of 
the error function is typically carried out by iterative tech-
niques [15]. Among the various learning algorithms, the back 
propagation algorithm [16] is one of the most important and 
widely used algorithms and has been successfully applied in 
many fields. It is based on the steepest descent gradient and 
has the advantage of being less computationally expensive. 
However, the conventional back propagation learning algo-
rithm suffers from short coming, such as slow convergence 
rate and fixed learning rate. Furthermore it can be stuck to a 
local minimum of the error. 
 
There are numerous algorithms have been proposed to im-
prove the back propagation learning algorithm. Since, the er-
ror surface may have several flat regions; the back propaga-
tion algorithm with fixed learning rate may be inefficient. In 
order to overcome with these problems, vogel et al [17] and 
Jacobs [18] proposed a number of useful heuristic methods, 
including the dynamic change of the learning rate by a fixed 
factor and momentum based on the observation of the error 
signals. Yu et al proposed dynamic optimization methods of 
the learning rate using derivative information [19]. Several 
other variations of back propagation algorithms based on se-
cond order methods have been proposed [20-24]. This method 
generally converges to minima more rapidly than the method 
based solely on gradient decent method. However, they re-
quire an additional storage and the inversion of the second-
order derivatives of the error function with respect to the 
weights. The storage requirement and computational cost, 
increases with the square of the number of weights. Conse-
quently, if a large number of weights are required, the applica-
tion of the second order methods may be expensive.  
It can realize that the generalization or approximation is basi-
cally the optimization problems. The multilayer feed forward 

neural network with backpropagated algorithm can perform 
the unconstraint non-linear optimization. It can also realize 
that the generalize pattern classification task is a non-linear 
optimization problem. Methods of nonlinear optimization in 
ANNs have been studied for hundreds of years, and there is a 
huge literature on the subject in fields such as numerical anal-
ysis, operations research, and statistical computing [25, 26]. 
Masters [27] has a good elementary discussion of conjugate 
gradient and Levenberg-Marquardt algorithms in the context 
of NNs. There is no single best method for nonlinear optimiza-
tion. One needs to choose a method based on the characteris-
tics of the problem to be solved. Objective functions that are 
not continuously differentiable are more difficult to optimize. 
For continuous objective functions that lack derivatives on 
certain manifolds, such as ramp activation functions (which 
lack derivatives at the top and bottom of the ramp) and the 
least-absolute-value error function (which lacks derivatives for 
cases with zero error), sub-gradient methods can be used. For 
objective functions with discontinuities, such as threshold ac-
tivation functions and the misclassification-count error func-
tion, Nelder-Mead simplex algorithm [52] and various secant 
methods can be used. However, these methods may be very 
slow for large networks, and it is better to use continuously 
differentiable objective functions when possible.  
Artificial Neural Networks (ANNs) have shown the efficient 
performance for the non-linear unconstraint optimization 
problems. The pattern classification for the handwritten curve 
script with its learning and generalization is an important non-
linear optimization activity. Multilayer feed-forward neural 
network with backpropagation learning rule and its various 
variants have been applied for this problem but due to ill-
posing and non-convergence problem the performance is not 
found adequate. The Multilayer feed-forward neural network 
is not intended specifically to solve a pattern classification or 
pattern mapping task, as both require generalization based on 
closeness property in classification and smoothness property 
in mapping respectively. Thus, a Multilayer feed-forward neu-
ral network trained with backpropagation learning is neither 
designed to exploit the property of closeness for generalizing a 
classification task, nor is it designed to exploit the property of 
smoothness to generalize a function approximation task. It is 
designed mainly to provide discrimination between patterns 
belonging to different classes. Therefore, mere manipulation of 
the structure of a neural network and learning of Multilayer 
feed-forward neural network are not likely to achieve the gen-
eralization required for a given problem. There is no guaran-
tee of obtaining the desired result. This is because; the net-
work is not designed specifically to address the generalization 
problem. Moreover, it is not generally possible to analyze a 
Multilayer feed-forward neural network to understand the 
task each layer is performing. In fact, if the given problem is 
known to be a classification problem based on the closeness of 
data in the input vectors, then specific architectures can be 
evolved to achieve generalization. Such architectures tend to 
be much simpler than a general Multilayer feed-forward neu-
ral network, and training also is likely to be simpler than the 
backpropagation learning. Therefore, it is possible to improve 
the generalization capability using regularization which in-
volves imposing some smoothness & closeness constraints 
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explicitly on the pattern classification and pattern mapping 
function. 
 
Let we assume that the training set data 
consists of pairs of   input-output vectors represented by  For a 
classification task,  
is an N-dimensional vector                                of zeros and ones, 
with a 1 in the Jth position if the input vector  belongs to the Jth 
class. This is considered as the hard classification. There may 
have several input vectors, which are close to each other, and 
hence may have the same    associated with them. In 
many situations, it may be desirable to have the N-
dimensional output vector to represent an estimate of the 
probability distribution of the classes for the given input. That 
is, the Jth component of bl corresponds to the probability that 
the input vector belongs to the class j. In this case the sum of 
all the components in bl will add up to 1. The input vector al  could be as an M-dimensional vector of ones and zeros or 
a vector of real numbers. In the function estimation or pattern 
mapping the output vector bl is an N-dimensional vector of 
real values. The function estimation can also be viewed as a 
nonparametric regression problem, as we are trying to deter-
mine a network that realizes the best fit function for the given 
input-output pairs of data. Thus, in both the cases i.e. general-
ize pattern classification and pattern mapping the learned 
network should generalize well, which means that the net-
work should give the correct classification for a new (test) data 
input in the case of a classification task and a reasonable ap-
proximation to the true function value for a new (test) data 
input in the case of function approximation.   The one essential 
subset of artificial neural network which has proved to be 
more adequate for regularization and interpolation is Radial 
Basis Function Network and its generalization. The important 
aspect of the RBFN is the distinction between the techniques 
of updating the first and the second layers weights. Various 
techniques have been proposed in the literature for optimizing 
the Radial Basis functions such as unsupervised methods like 
selection of subsets of data points [28], orthogonal least square 
method [29], clustering algorithm [30], Gaussian mixture 
models [31] and with the supervised learning method [32].  
 
The RBF network has one hidden layer of Gaussian functions, 
which are combined linearly by the output nodes. In early 
stage, the parameters of RBF networks were usually estimated 
in two phases: Gaussian parameter estimation by clustering 
and weight learning by error minimization. Since the cluster-
ing procedure does not consider the divisibility of patterns, 
the Gaussian parameters learned this way do not lead to good 
classification performance. A substantial improvement is to 
adjust all the parameters simultaneously by error minimiza-
tion [32]. This makes the RBF network competitive with the 
multilayer perceptron in classification accuracy. It has been 
observed [33] that the use of unsupervised techniques to de-
termine the Radial Basis function parameters is not in general 
an optimal procedure so far as the subsequent supervised 
training is concerned. The difficulty with the unsupervised 
techniques arises due to the setting up of the Radial Basis 
functions using density estimation of the input data and takes 
no consideration for the target levels associated with the data. 

Thus, it is obvious that to set the parameters of the Radial Ba-
sis functions for the optimal performance the target data 
should be included in the training procedure and it reflects the 
supervised training.  
Hence, the Radial Basis function parameters for regression can 
be found by the training the Radial Basis function centers and 
widths along with the second layer weights as adaptive pa-
rameters to be determined by minimization of an error func-
tion. Although, both Radial basis feed forward neural network 
(RBFN) and multilayer neural feed forward neural network 
have shown appreciable generalization performance, but at 
the same time we can see that in these two networks Feed 
Forward mechanism of neural network and weight update 
function (Radial Basis) of RBFN are two key role players for 
the success of these systems. So In this work we have tried to 
create a system by taking the above specified qualities of both 
networks together. 
The multilayer neural feed forward neural network usually 
suffers with the convergence problem of local error surface 
and the use of second order gradient descent term in weight 
update has significantly improved the performance of multi-
layer neural feed forward neural network [34]. Also, all of the 
above methods find local optima i.e. they are not guaranteed 
to find a global optimum. Global optimization for neural nets 
is especially difficult because the number of distinct local op-
tima can be astronomical. Another important consideration in 
the choice of optimization algorithms is that neural nets are 
often ill-conditioned [34], especially when there are many hid-
den units. The algorithms that use only first-order infor-
mation, such as steepest descent and standard back-
propagation are notoriously slow for ill-conditioned problems. 
Generally speaking, the more use an algorithm makes of se-
cond-order information, the better it will behave under ill-
conditioning. The following methods are listed in order of 
increasing use of second-order information: conjugate gradi-
ents, quasi-Newton, Gauss-Newton and Newton-Raphson 
[35]. Due to the ill-conditioned nature of multilayer feed for-
ward neural network trained with backpropagation algorithm 
used for handwriting recognition, it has also been proposed to 
evaluate the performance of the proposed network with the 
introduction of Conjugate Descent of RBF. The Conjugate 
Gradient Descent methods have been proven to be most effec-
tive and fast convergence methods in the problem domain of 
supervised learning. 
In this research work we consider three neural networks archi-
tectures (NN1, NN2 and NN3). The first architecture NN1 is 
trained and tested with the conventional back propagation 
learning algorithm with the incorporation of Doug’s Momen-
tum descent term [36]. The NN2 network architecture has 
been put into operation with the Radial Basis Function [37] in 
the hidden layer. This network incorporates the Steepest Gra-
dient Descent for weight updates. The third architecture uses 
NN2 as base network but includes more restrictions in terms 
of weight update rule. NN3 introduces the Conjugate Descent 
of Radial Basis Function. The performance of all these three 
networks has been judged for input patterns of the handwrit-
ten curve scripts of three words of English language. These 
input patterns are considered in the form of binary image ma-
trix. The networks analyzed to figure out the network that 
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exhibits higher performance results with greater efficiency. 
Every network is assessed based on the rate of convergence 
and speed of determination of the convergence weights for the 
every pattern. So these two things have been the key-focus 
points of this work. The experiments are conducted with 600 
samples of English words of 3 characters. The significant im-
provement in the generalized pattern classification of hand-
written words is achieved. Hence, among the neural network 
models, Radial Basis function network seems to be quite effec-
tive for generalize pattern classification task such as handwrit-
ten character recognition. 
 

2  GRADIENT DESCENT RADIAL BASIS FUNCTION  
 
The architecture and training methods of the RBF network are 
well known [37, 38, 39, 40, 41, 42, 43] & well established. The 
Radial basis function network (RBFN) is a universal approxi-
mator with a solid foundation in the conventional approxima-
tion theory. The RBFN is a popular alternative to the MLP, 
since it has a simpler structure and a much faster training pro-
cess. The RBFN has its origin in performing exact interpolation 
of a set of data points in a multidimensional space [44, 45]. The 
RBFN is having, network architecture similar to the classical 
regularization network, where the basis functions are the 
Green’s functions of the Gram operator associated with the 
stabilizer. If the stabilizer exhibits radial symmetry, the basis 
functions are radially symmetric as well and an RBFN is ob-
tained. From the viewpoint of approximation theory, the regu-
larization network has three following desirable properties 
[46, 47]: 

1. It can approximate any multivariate continuous 
function on a compact domain to an arbitrary ac-
curacy, given a sufficient number of units. 

2. The approximation has the best-approximation 
property since the unknown coefficients are line-
ar. 

3. The solution is optimal in the sense that it mini-
mizes a functional that measures how much it os-
cillates.   

An RBFN is a three layer feed forward network that consists of 
one input layer, one hidden layer and one output layer as 
shown in figure (1), each input neuron corresponds to a com-
ponent of an input vector x.  The hidden layer consists of K 
neurons and one bias neuron. Each node in the hidden layer 
uses an RBF denoted with ),(rφ as its non-linear activation 
function. 

 
 
 
 
 
 
 
 
 
 
 

                                  10 =φ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig
ure 1: Architecture of the RBFN. 

 The input layer has N nodes; the hidden and the output 
layer have K and M neurons, respectively.                 , corre-
sponds to the bias. 

 
 
The hidden layer performs a non-linear transform of the 

input and the output layer this layer is a linear combiner 
which maps the nonlinearity into a new space. The biases of 
the output layer neurons can be modeled by an additional 
neuron in the hidden layer, which has a constant activation 
function                . The RBFN can achieve a global optimal 
solution to the adjustable weights in the minimum mean 
square error (MSE) range by using the linear optimization 
method. Thus, for an input pattern x, the output of the jth node 
of the output layer can define as; 

 
 

                                                                                                     
(2.1) 

 
 
 

for  where                      is the  
output of the 

thj     processing element of the output layer  
for the RBFN ,                is the connection weight from 
the kth hidden unit to the jth output unit ,          
is the prototype or centre of the kth hidden unit. The Radial 

Basis Function    is typically selected as the Gauss-
ian function that can be represented as: 

   
 
 

                                       for 
 
   And  1 for                                   (bias neuron)   (2.2) 
 
  
Where x is is the N- dimensional input vector, is 

the vector determining the centre of the basis function kφ     
and      kσ      represents the width of the neuron. The weight 
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vector between the input layer and the kth hidden layer neuron 
can consider as the centre           for the feed forward RBF neu-
ral network. 

Hence, for a set of L pattern  
pairs,   (2.1) can be expressed in the matrix form as 
         

   (2.3) 
 

 
    where                                                                 a K x M  weight matrix                              

, 

 
 is a K x L        is     matrix,     
the out- put of 
the hid- den 
layer for the lth,           
sample, 
 
is a M x L matrix and  
 
. 

The important aspect of the RBFN is the distinction be-
tween the rules of the first and second layers weights. It can be 
seen that, the basis functions can be interpreted in a way, 
which allows the first layer weights (the parameters governing 
the basis function), to be determined by unsupervised learn-
ing. This leads to the two stage training procedure for RBFN. 
In the first stage the input data set {xn} is used to determine the 
parameters of the basis functions. The basis functions are then 
keep fixed while the second–layer weights are found in the 
second phase of training. There are various techniques have 
been proposed in the literature for optimizing the basis func-
tions such as unsupervised methods like selection of subsets of 
data points [48], orthogonal least square method [49], cluster-
ing algorithm, Gaussian mixture models [50] and with the su-
pervised learning method. 

It has been observed [51] that the use of unsupervised tech-
niques to determine the basis function parameters is not in 
general an optimal procedure so far as the subsequent super-
vised training is concerned. The difficulty with the unsuper-
vised techniques arises due to the setting up of the basis func-
tions, using density estimation on the input data and takes no 
consideration for the target labels associated with the data. 
Thus, it is obvious that to set the parameters of the basis func-
tions for the optimal performance, the target data should in-
clude in the training procedure and it reflects the supervised 
training. Hence, the basis function parameters for regression 
can be found by treating the basis function centers and widths 
along with the second layer weights, as adaptive parameters 
to be determined by minimization of an error function. The 
error function has considered in equation (1.1) as the least 
mean square error (LMS). This error will minimize along the 
decent gradient of error surface in the weight space between 
hidden layer and the output layer. The same error will mini-
mize with respect to the Gaussian basis function’s parameter 
as defined in equation (2.2). Thus, we obtain the expressions 
for the derivatives of the error function with respect to the 
weights and basis function parameters for the set of L pattern 

pairs                          as; where 1=l  to L. 
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Again from the equation (2.6) we have 
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So that, we have from equations (2.8), (2.9) & (2.10) the expres-
sions for change in weight vector & basis function parameters 
to accomplish the learning in supervised way. The adjustment 
of the basis function parameters with supervised learning rep-
resents a non-linear optimization problem, which will typical-
ly be computationally intensive and may be prove to finding 
local minima of the error function. Thus, for reasonable well-
localized RBF, an input will generate a significant activation in 
a small region and the opportunity of getting stuck at a local 
minimum is small.  
Hence, the training of the network for L pattern pair i.e.  will 
accomplish in iterative manner with the modification of 
weight vector and basis function parameters corresponding to 
each presented pattern vector. The parameters of the network 
at the mth   step of iteration can express as; 
 

 
       

   

                                                       (2.11) 

  

                                         (2.12) 

                                                        

(2.13) 

Here are the coefficients of learning rate. 
Thus, in decent gradient learning for the RBF network the 

change in weights and basis function parameters can be com-
puted as; 

                                                                              
(2.14)

 

                                                                              (2.15) 

And 

(2.16) 

The discussed gradient decent approach for implementa-
tion of RBFNNs system is incremental learning algorithm in 
which the parameters update for each example 

 of the training set.  
 
The RBFNNs trained by the gradient-decent method is ca-

pable of providing the equivalent or better performance com-
pared to that of the multi layer feed forward neural network 
trained with the back propagation. The gradient decent meth-
od is slow in convergence since it cannot efficiently use the 
locally tuned representation of the hidden layer units. When 
the hidden unit receptive fields, controlled by the width  

    are narrow for a given input only a few of the total num-
ber of hidden units will be activated and hence only these 
units need to be updated. Thus, there is no guarantee that the 
RBFNN remains localized after the supervised learning [44]. 
As a result the computational advantage of locality is not uti-

lized. Indeed, in numerical simulations it is found that the 
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subset of the basis functions like conjugate descent of Radial 
basis function may evolve to have very broad responses.  

 

3.  Conjugate Descent of Radial Basis 
function 

It has been observed and discussed , that the multilayer 
feedforward neural networks suffers with the problem of find-
ing global minima when it is ill-conditioned and the Radial 
Basis Function network also has no guarantee from the skiing 
of local minimum. Hence here we are proposing the use of 
Conjugate Descent of Radial Basis Function. When we apply 
characteristics of a minimum to the weight update and change 
in weight from equation (2.14), we find following trajectory 
graph: 

 
 

       
Figure 2: Direction of Error minimization in FF-MLP 

(Steepest Gradient) 
 
It is clearly evident that the graph is having zigzag motion. 

The solution to the zigzag problem the steepest descent 
method suffers from, is to use as much of the direction of the 
previous step as possible. We can express this as the new 
search direction being a mixture of the new gradient direction 
and the previous search direction as:  

 
   

         (3.1) 
Or, in weight update terms we can represent this theorem 

as:- 
 
                                                                                                             

                                                                             (3.2) 
 
Here β is known as the conjugate gradient parameter. 
The conjugate gradient descent method chooses the new 

direction so as not to undo the minimization achieved by the 
previous step; i.e., the new weight change should not change 
(to first order) the component of the gradient along the 
previous direction.  

 
 
 
 

  

 

                
    Figure 3: Direction of Error minimization in Conjugate 

RBF-MLP. 
 
The result of this Conjugate Descent is still a zigzag path, 

but in another space (scaled and rotated according to the Eig-
en values). However, in this path, each orthogonal component 
of the remaining error is reduced to zero in turn, one compo-
nent at a time, by performing a line search for the minimum 
along the corresponding vector. For an N-dimensional prob-
lem, the method converges in N steps. 

There are various methods those suggests to compute the 
term β. We have used the Polak-Ribière formula as: 

 
 

2)))(((
))(()))(())(((

previous

newpreviousnew

wEgrad
wEgradwEgradwEgrad ∗−

=β

     (3.4) 
Now, let us compute the gradient values for set of training 

and test cycles. The Radial Basis function parameters 

corresponding to each presented pattern vector at the 

parameters of the network at the kth step of iteration can be 

evaluated based on the gradient of the error surface and 

minima of the local error. The minima can only be verified by 

computing the second order derivations of error function with 

respect to standard deviation and width of center vectors.  

 

                                                                                                       (3.5) 

And from equation (2.10) we get-  

                                                                       

                                                                                       (3.6) 
               

                                                                                       (3.7)  
 

 
The interdependency of mean µ, weight w and standard 

deviation σ is an important thing to study the Error minimiza-
tion process, so that we can have following equations:- 

     (3.8) 

previousnewnew dwEgradd ∗+−= β))((

)2()1()()()1( −∆+−∆+∆+=+ tWtWtWtWtW kikikiikik βαη

IJOART



International Journal of Advancements in Research & Technology, Volume 2, Issue 12, December-2013                                     119 
ISSN 2278-7763   
 

Copyright © 2013 SciResPub.                                                                                 IJOART 

 

           
 

 
 

                                                                                                 (3.9) 
 
 

                    

                                                                                   (3.10) 

        The discussed Conjugate gradient descent approach for 
implementation of NN3 system is incremental learning 
algorithm in which the parameters are updated at each 
example (xl, yl) of training set. The training with the 
Conjugate decent gradient method is capable to provide 
the equivalent or better performance compared to that of 
the multi layer feed forward neural network trained with 
the back propagation. The Conjugate gradient decent 
method is speedy in convergence since it can competently 
use the locally tuned representation of the hidden layer 
units. When the hidden unit receptive fields, controlled by 
the width                are narrowed for a given input; only  a 
few of the total number of hidden units will be 
activated and only these units need to be updated. It has 
been realized that some of the main advantages of the 
Conjugate Descent Radial basis function, is the fast two 
stage training and interpretability of the hidden unit 
representation. 

      The conjugate gradient descent method has been applied 
to train the neural network architecture and the significant 
increase in speed and convergence is considered. 
Interesting is the possibility that a network trained with 
this method may converge to quite a different point in the 
error landscape because of the different size and direction 
of the steps taken. Especially if the surface is very 
irregular or contains many local minima the conjugate 
gradient descent method may perform very differently 
from, say, the back-propagation method. 

        Now in the following subsection, we are presenting the 
simulation designed implementation details of redial basis 
function and its conjugate descent to accomplish the task 
of generalized pattern classification for handwritten curve 
scripts of three words of English language. The 
performance of RBF and its conjugate descent network is 
compared with the performance of multilayer feed 
forward neural network trained with backpropagation 
learning rule. 

 

4. SIMULATION DESIGN AND IMPLEMENTATION  
                DETAILS 
 

The experiments described in this section are de-
signed to evaluate the performance of feed forward 
neural networks when evolved with the back propa-
gation algorithm, RBF network and the conjugate de-
cent of RBF network. 
As we have discussed already that to accomplish the 
generalized pattern classification task for the hand-
written curve scripts the unconstraint non-linear op-
timization is required. Hence to perform this three 
neural network architectures are considered i.e. NN1, 
NN2 and NN3. The NN1 evolved with multilayer 
feed forward neural network trained with backprop-
agation learning rule (FFBP), The NN2 is considered 
as radial basis function network (RBFN) and the NN3 
is evolved with the conjugate descent of radial Basis 
function network (CDRBFN). The training set for 
these experiments are constructed with 600 samples 
of handwritten words of three letters. Each pattern 
vector of the training set is constructed with input 
vector of 150 x 1. Thus, each input pattern involves 
150 features for each scanned image of the handwrit-
ten three letters word. All three neural networks are 
simulated using feed-forward neural network archi-
tecture consists of 150 neurons in input layer, 20 neu-
rons in hidden layer and 26 output neurons. The 26 
output neurons correspond to 26 letters of English al-
phabet. The number of hidden neurons is directly 
proportional to the system resources. The bigger the 
number more the resources are required. The number 
of neurons in hidden layers is kept 20 for optimal re-
sults. Each network has 150 input neurons that are 
equivalent to the input character’s size as we have 
resized every character into a binary matrix of size 
15x10. Character’s image is achieved by applying the 
segmentation technique [53]. The distinguishing fac-
tors among FFBP (NN1) and RBFN (NN2) and 
CDRBFN (NN3) is that in the case of FFBP the net-
work contains Log-Sigmoid transfer functions where-
as RBFN contains RBF transfer function and Conju-
gate CDRBFN  is optimized with the introduction of 
Conjugate Descent of RBF. The 625 word samples are 
gathered form 51 subjects of different ages including 
male and female for the input samples. After the pre-
processing module 600 input samples were consid-
ered for training. Each sample was presented to the 
network 3 times.  Thus 1800 experiments have been 
conducted. 
The input patterns for experiments are prepared 
based on method discussed in [53]. A brief of this 
method is:- 

kσ
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1) Segment each word’s image using vertical segmentation 
technique. 

2) Reshape each character’s image in to 15x10 binary matrix. 
3) Resize the image into 150x1 matrix. 
4) Repeat 2 and 3 for all three characters and club together in 

150x3 matrix to form a sample. 
5) Repeat 1-4 for all words to create 600 samples. 
 
The input sample for one word from above referred technique 
can be depicted as:- 

 

 

Figure 4: Input sample for the first set of experiments. 

 
Experiments 
Three sets of experiments were executed. In each of the sets 
same type of network architecture was used. In the first exper-
iment we have used multilayer feed forward neural network 
trained with backpropagation learning algorithm and evaluat-
ed for the generalized pattern classification for the given train-
ing set. In the second experiment we have used Radial Basis 
Function network for the same training set to evaluate its per-
formance for the generalized pattern classification. In the third 
experiment we have used the conjugate descent of Radial basis 
function network for the same training set and also evaluate 
its performance again for the generalized pattern classifica-
tion.  In total the number of experiments conducted for train-
ing of all of the networks was 1800 including 1800 training 
cycles for each type of network. The testing of the performance 
of networks was done with 25 sample patterns of the test pat-
tern set those were not used in the training set. The parame-
ters used for both experiments are described in Table 1 and 2 
as follows: 
 

 
 

 

 

Parameter Value 

Back propagation learning Rate ( )η  
0.1 

Momentum Term ( )α  
0.9 

Doug’s Momentum Term  ( )






− α1
1

 
( )






− α1
1

 

Adaption Rate ( )K  
3.0 

Initial weights and biased term val-
ues 

RandomlyGenerated 
Values Between 0 
and 1 

Table 1:  Parameters Used for Back propagation 
Algorithm 

 

 
 

Table 2: Parameters Used for Radial Basis function and its 
conjugate descent 

 
THE NETWORKS’ LEARNING AND PERFORMANCE 
        EVALUATION:- 

The system is trained with 600 samples, with following set of 

Parameter Value 
Back propagation learn-

ing Rate ( )η  
0.1 

Momentum Term ( )α  0.9 

Doug’s Momentum Term 

( )






− α1
1

 
( )






− α1
1

 

Adaption Rate ( )K  3.0 

Spread  parameter σ  1.0 

Mean of inputs( c) 
Between maximum & minimum 

values 

Initial weights and biased 

term values 

Randomly Generated Values Be-

tween 0 & 1 
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training parameters as presented in table 3 and 4 are used 
in the MATLAB simulation for the neural networks:- 

Parameter Name Value 
Max Epochs 50000 

Training Function TRAINLM 

Performance Function MSE (Mean Square Error) 

Training Goal 0.0001 

Minimum gradient 0.00000007 

Maximum Fail 60 

Show Graph 100 epochs 

 
Table 3: Network training function and Parameter values 

for FFBP network. 
 

Parameter Name Value 
Max Epochs 50000 

Training Function NEWRB and NEWRBE 
Performance Function MSE (Mean Square Error) 

Training Goal 0.0001 

Minimum gradient 0.00000007 
Maximum Fail 60 

Show Graph 100 epochs 

 
Table 4: Network training function and Parameter values  
for RBF and CDRBF network. 
 

5. RESULTS AND DISCUSSION 
All three networks i.e. NN1 (FFBP), NN2 (RBF) and NN3 

(CDRBF) have been trained and examined with same sets of 
sample data. Training and testing samples of format 150x3 for 
a particular word, when presented to the Networks; yielded 3 
sets of data. The performance of the particular network has 
been evaluated based on the comparison done for same sam-
ples of data with other networks. For testing of the network, 
25 test samples were used to validate the performance of these 
three trained neural networks for the classification.  

The networks were trained with 600 different sets of input 
patterns. The table 5 contains epoch average of 10 iterations 
for 600 samples, thus only 60 readings have been mentioned. 
Sample1 depicts average epoch value for sample1 to sample10; 
Sample2 depicts average epoch value for sample11 to sam-
ple20 and so on. Each sample has been presented to three 
networks. Experiments are conducted with training and test 
patterns formed as binary format of 150x3. The number of it-
erations (epochs) required by each network to learn the par-

ticular sample was captured and an average of such 10 values 
is summarized in Table 5. This table data is used to compare 
the learning and convergence performance of each network.  

Samples 
Epochs 

with 
FFB
P 

Epochs 
With 
RBF 

Epochs With 
CDRBF 

Sample 1 117 5 3 

Sample 2 248 23 15 

Sample 3 392 28 19 

Sample 4 600 31 22 

Sample 5 856 59 27 

Sample 6 1303 71 43 

Sample 7 2651 108 52 

Sample 8 3899 163 69 

Sample 9 5527 177 74 

Sample 10 7605 202 81 

Sample 11 8124 229 95 

Sample 12 13642 256 118 

Sample 13 14200 291 134 

Sample 14 16693 337 150 

Sample 15 17834 375 179 

Sample 16 18005 490 186 

Sample 17 19766 736 208 

Sample 18 20763 934 219 

Sample 19 21830 1016 241 

Sample 20 26991 1419 250 

Sample 21 28421 1620 272 

Sample 22 32095 1883 285 

Sample 23 34298 2037 297 

Sample 24 35109 2790 334 

Sample 25 39254 3188 406 

Sample 26 48913 3632 478 

Sample 27 NC 4194 616 

Sample 28 NC 6278 699 
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Samples 
Epoc

hs with 
FFBP 

Epochs 
With RBF 

Epochs 
With CDRBF 

Sample 29 NC 8115 854 
Sample 30 NC 9023 938 
Sample 31 NC 11755 991 
Sample 32 NC 12891 1402 
Sample 33 NC 14378 1755 
Sample 34 NC 17603 1863 
Sample 35 NC 19379 2027 
Sample 36 NC 21118 2123 
Sample 37 NC 25375 4398 
Sample 38 NC 33426 6875 
Sample 39 NC 36568 7835 
Sample 40 NC 37624 8247 
Sample 41 NC 40275 9107 
Sample 42 NC 41811 10269 
Sample 43 NC 43899 15481 
Sample 44 NC 44053 18757 
Sample 45 NC 45276 20942 
Sample 46 NC 46831 22413 
Sample 47 NC 50000 25910 
Sample 48 NC 48643 29037 
Sample 49 NC 49079 30441 
Sample 50 NC NC 35312 
Sample 51 NC NC 41271 
Sample 52 NC NC 46896 
Sample 53 NC NC 47316 
Sample 54 NC NC 48745 
Sample 55 NC NC 49013 
Sample 56 NC NC NC 
Sample 57 NC NC NC 
Sample 58 NC NC NC 
Sample 59 NC NC NC 
Sample 60 NC NC NC 

 
Table 5: Epochs or Number of network iterations for the 

given training set 
 
From the table 5, we can see that the maximum number of 

epochs assigned to the networks is 50000. The presence of NC 
(Not Converged) in above mentioned table shows that the 
maximum number of epochs has been reached but the net-
work did not converge to the desired output; due to the error 
exists in the network. The graphical representation for all the 
three networks in terms of epochs has been displayed in fol-
lowing figure. 

 
 
 
 
 
 
 
 
 
 

 

 
 
figure 5: Comparison chart of three networks with respect 

to number of epochs 
 
Presences of maximum epoch values in this figure repre-

sent the powerlessness of network to learn the behavior in 
specified limitation of iterations. Only 267 samples were learnt 
by the FFBP; whereas, RBF could make up to 493 samples. On 
the contrary Conjugate RBF (CDRBF) has learnt the maximum 
i.e. 552 samples. After that the test pattern samples are pre-
sented to these networks to validate the performance of these 
trained neural networks. There are 25 test pattern samples. 
Hence out of these 25 test pattern samples the FFBP is able to 
classified correctly only 8 samples and remaining 17 patterns 
are misclassified i.e. only 32% patterns are correctly classified 
and remaining 68 % are misclassified. The RBF network is able 
to classified 15 pattern correctly and 10 test patterns are mis-
classified i.e. 60% patterns are correctly classified and 40% 
patterns are misclassified. The CDRBF network is able to clas-
sified 21 patterns correctly and 4 patterns are misclassified i.e. 
84% patterns are correctly classified whereas 16% patterns are 
misclassified. Thus the rate of correct classification is much 
higher and rate of misclassification is low in CDRBF network 
with respect to the other neural networks. This shows the ade-
quate generalized behavior performance of conjugate descent 
radial Basis Function network for pattern classification.   

 
The experimental results confirm that the proposed method 

results in high performance in terms of recognition rate and 
classification accuracy, at the same time completely eliminat-
ing the substitution error. Hence the developed architecture is 
robust in the recognition of unconstrained handwritten words. 
We have developed three classification networks to recognize 
unconstrained handwritten words. The experiments those 
have been carried out on the training and test sets to assess the 
performance of each classification network; have shown that it 
is preferable to deal with Conjugate Descent RBF network. 
This is due to the amount of data learnt easily by this network 
as we can refer table 6, which is almost twice the amount of 
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data learnt by feed-forward multilayer neural network trained 
with backpropagation algorithm. 

 
The results demonstrates that, within the simulation 

framework presented above, large significant difference exists 
between the performances of Backpropagation feed-forward 
neural network and Conjugate Descent based RBF network for 
handwritten English words recognition problem. The results 
described in this paper indicate that, for the handwritten Eng-
lish language words classification problem, feed-forward neu-
ral network trained with Backpropagation algorithm does not 
perform better in comparison to feed-forward neural network 
trained with Conjugate Descent of RBF. The performance of 
Conjugate RBF-MLP is efficient and accurate in all the simula-
tions. The higher speed of convergence in the Conjugate De-
scent RBF training process suggests that this architecture may 
not be fascinated in the false minima of the error surface. It 
may also minimize the possibilities of misclassification for any 
unknown testing input pattern.   

 
The simulation program, which we have been developed in 

MATLAB 6.5, for testing these three networks for handwritten 
curve script of English language to accomplish the task of 
generalized pattern classification, generates initial weights 
randomly through its random generator. So the epochs for the 
algorithms will be different every time with the same network 
structure and the same training data set.  

  

2.4 Conclusions & Future Work 
The results described in this present work indicate that, for 

the non-linear unconstrained optimization problem like gen-
eralized classification of handwritten curve script of three 
words, feed forward neural network trained with back propa-
gation algorithm does not perform better in comparison to 
feed forward neural network trained with decent gradient 
with RBF and conjugate descent of Radial basis function net-
work. The performance of conjugate descent Radial Basis 
Function network is found better even than simple Radial ba-
sis Function network in term of number of training iterations 
and classification accuracy.   We found that, in each and every 
case, the conjugate descent Radial Basis Function network 
gives better results for the classification of handwritten curve 
script of three words, in comparison to the decent gradient 
with RBF and feed forward neural network trained with back 
propagation algorithm. It has been also observed that the RBF 
network has also stuck in local minima of error for some of the 
cases. The conjugate descent RBF network also stuck in local 
minima but the probability is much lesser then simple RBF 
network. The reason for this observation is quite obvious, be-
cause there is no guarantee that RBFNN remains localized 
after the supervised learning and the adjustment of the basis 
function parameters with the supervised learning represents a 
non-linear optimization, which may lead to the local mini-
mum of the error function. But the proposed conjugate de-
scent radial Basis function (CDRBF) neural network is well 
localized and it provides that an input is generating a signifi-
cant activation in a small region. So that, the opportunity is 
getting stuck at local minima is small. Thus the number of cas-

es for conjugate descent radial Basis function (CDRBF) neural 
network to trap in local minimum is very low. 

The direct application of conjugate descent radial Basis 
function (CDRBF) neural network to the handwritten curve 
script classification has been explored in this research. The aim 
is to introduce as alternative approach to solve the generalized 
pattern classification problem.  The results from the experi-
ments conducted are quite encouraging and reflects the im-
portance of radial basis function for the unconstraint non-
linear optimization problem. Nevertheless, more work need to 
be done especially to evaluate the performance of proposed 
method on the complex handwritten curve scripts of more 
numbers of alphabets. Some future works should also be ex-
plored for better technique of feature extraction. The evolu-
tionary search techniques can incorporate with conjugate de-
cent RBF to make the performance of neural network for gen-
eralization and approximation more adequate to explore the 
global optimal solutions and minimize the problem of local 
minimum. 
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