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ABSTRACT 
 An efficient and reliable procedure is presented for the minimum weight design of moment-resisting plane 

steel frames subjected to the stress constraints of the AISC-LRFD specifications. The cross-section of a 

typical member consists of a symmetrical I-section whose web and flange dimensions are considered as 

design variables. In order to achieve computational economy the problem is decomposed into two sets of 

variables. The more sensitive variables are found by modified Complex Method of Box and the less 

sensitive variables are determined by fully-stressed design procedure. To evaluate the performance of the 

developed algorithm two numerical problems are solved.  
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1. Introduction 

Generally, structures are designed by trial and error, that is; an initial design is assumed 

and then analyzed to evaluate its performance. The design is modified based upon the 

information provided by the analysis, subsequently the designer reanalyzes the design 

and this process continues. The design-analysis-redesigns steps are repeated until no 

further significant improvement is possible. This conventional design process is very time 

consuming. The designer usually terminates the process after several iterations and the 

design thus obtained is feasible but not necessarily optimal one. Design optimization 

process is an activity that can be fully automated.  

It is theoretically possible to solve the entire structural optimization problem 

using mathematical programming techniques. However, in practice, difficulties emerge 

due to computational inefficiencies, when the dimension of the design space either 

becomes too large, or contains variables of different sensitivities, or both. In order to 

overcome these difficulties, the entire design space is decomposed into two subspaces. 

The important aspect of this decomposition, however, lies in the fact that two different 

strategies for finding the optimal solutions in the two subspaces are used. For instance, 

the variable cross-sectional dimensions of I-shaped member, web depth and flange width, 

playing more significant role in the optimal design of a member size are found by the 

application of  a modified version of Complex Method of Box. The less sensitive 

variables i.e. web and flange thicknesses of the members are found by using the fully-

stressed optimality criterion. 

The Complex Method of Box [3] has been applied to small academic examples of 

structural optimization subjected to the stress constraints of the AISC-ASD specifications 

in the past (Fu [5], Haque [6, 7], Lai [9], and Lipson [10-14]), and performs well in this 

study. The present work considers the optimal weight design of two moment-resisting 

frames of fixed geometry under multiple load conditions subjected to stress design 

criteria stipulated in AISC-LRFD code. The results show favorable design improvements 

and rate of convergence.   
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2. Optimum Design Problem and its Formulation 

The optimum load and resistance factor design problem of a rigidly jointed plane 

frame with stress constraints can be stated as follows. Find the cross-sectional 

dimensions, flange width (bm), flange thickness (tm), web thickness (wm), and web depth 

(dm) of I-shaped members of a rigidly jointed plane frame so that the structure is able to 

carry safely a set of external loads and, at the same time, attain the minimum weight 

among all feasible designs. The geometry and topology of the structure are not changed 

during the optimization process. 

The problem can be formulated as a mathematical programming problem as 

follows. Find a design vector 

Z = Zi = (bm, tm, wm, dm)                     (1) 

(i = 1, 2, --------, N),                 (m = 1, 2, --------, M) 

so that the objective function 

1

M

i i

i

F A L
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              (2) 

attains a minimum value among all feasible designs that satisfy the explicit constraints. 
L U

m m mb b b                     (m = 1, 2, --------, M)                                          (3a) 

L U

m m mt t t                        (m = 1, 2, --------, M)                                      (3b) 
L U

m m mw w w                    (m = 1, 2, --------, M)                                       (3c) 
L U

m m md d d                     (m = 1, 2, --------, M)                                     (3d) 

and u implicit constraints. 

gi(Z) < 0                              (i = 1, 2, --------, u)                                       (4) 

in which Zi represents the variables of the design vector, N is the dimension of the design 

space, M is the total number of members,     is the material density, and Ai is the cross-

sectional area of member i. The superscripts L and U denote the lower and the upper 

bounds on the design variables. The implicit constraints impose restrictions on the 

stresses as governed by the AISC-LRFD specification.  

 Equation 1 is a general description of the design vector. In practice, not all 

elements of the design vector are independent variables of the design space. Some of the 

variables may be linked in order to satisfy symmetry. Thus, the dimension of the design 

vector in a particular case may be smaller than what has been suggested for the more 

general case.  

 

3. Solution Procedure: 
 To solve the stated optimization problem, a computational methodology is 

developed consisting of three logically separable phases: the optimization phase, the 

structural analysis phase, and the design evaluation phase. During the optimization phase, 

attempts are made to improve by finding feasible points that are successively closer to an 

optimum. In the structural analysis phase, the structure, provisionally obtained in the 

optimization phase, is analyzed and, finally, the feasibility of the structure is checked in 

the design evaluation phase. An overview of the Complex Method of Box is given below. 
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3.1 The Complex Method of Box [3] 

 The Complex Method is a mathematical programming procedure for finding an 

optimal solution of non-linear, constrained optimization problems. This method derives 

its acronym COMPLEX from two words, Constrained and Simplex. The Complex 

Method was proposed originally by M. J. Box in 1965, where he demonstrated efficacy 

of the method in finding near optimal solution to non-linear, constrained optimization 

problems. It is a Zero-order method optimization method; that is, it does not require 

either the gradient of the objective function, or that of the constraints. The choice of 

Complex Method was made for its ability to span large portions of the design space, 

thereby providing a better chance of finding the global optimum, and for its ability to deal 

with constrained optimization problems. 

The method attempts to find a design vector            xix                 1,2,............,i N   

where x denotes the design vector and x i  the coordinate of a point in the design space.  

 such that to minimize                   (x )if          1,2,............,i N  

subject to N  explicit constraints   x x x
UL

i i i               1,2,............,i N  

 and M implicit constraints    (x ) 0j ig          1,2,............,j M         1,2,............,i N  

Where N  is the number of design variables and M  is the number of implicit constraints,      

xL

i  the lower and xU

i  the upper limit for design variables. 

The Complex Method optimizes a provisional design by reflecting the worst point 

(design) through the centroid to find the best point (design). The optimization process is 

divided into two phases. In the first phase a set of feasible points (satisfying all 

constraints) are generated randomly. After generating the initial complex, the algorithm 

moves to the reflection phase. In this phase, the method calls for the improvement of the 

worst point in the complex. To improve a point, the algorithm reflects it through the 

centroid of the remaining points (vertices of the Complex). If the reflected point is worst, 

or it violates an implicit constraint, it is moved back half the distance to the centroid. The 

method continues in this manner until convergence criteria are met, or the maximum 

number of iterations is reached. Details of the method and its successful application to 

structural design problems can be found in references [3, 5-7, 9, 10-14].  

3.2 Proposed Modifications and Implementation of the Complex Method 

 The modifications to the Complex Method as used in this study are summarized 

as follows. 

i) Separation of design space: Theoretically, it is possible to apply the mathematical 

programming techniques to the variables of the entire design space. In general, such a 

design problem involves significant number of design variables and a significant number 

of linear and nonlinear constraints for structure to ensure that there are sufficient margins 

between design load effects and their load bearing capabilities. In addition, since the 

variables are of different nature, numerical problems may arise during the solution 

process. Thus, from the computational point of view, it is highly desirable to decompose 

the design space into a number of subspaces; with each subspace having its own 

optimization strategy. 
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In the Hybrid Complex Method proposed in this study, the entire design space is 

decomposed into two subspaces. During the Optimization process, the more sensitive 

variables i.e. web depths and flange widths of the members are strictly obtained by the 

modified Complex Method and the less sensitive variables i.e. web and flange 

thicknesses of the members are found by using the fully-stressed optimality criterion.  

ii). Feasibility of the initial design: An initial point in an n-dimensional design space is 

chosen. In the original procedure this point was required to be feasible, but the present 

algorithm has been written in such a way that if the initial chosen point is not feasible it is 

made feasible by adjusting one or more of the coordinates of the design vector. 

iii). Satisfying the implicit constraints: In the original procedure proposed by Box the 

points in the initial complex which violated the implicit constraints were moved halfway 

back towards the centroid of the remaining, already accepted points. The process of 

moving halfway in towards the centroid is repeated until the point becomes feasible. In 

the present method, an attempt is made to satisfy all the implicit constraints for each 

randomly chosen point during the sizing of web and flange thicknesses of the members 

using the fully-stressed optimality criterion. If it is impossible to satisfy all the implicit 

constraints by this method, then, the original procedure is used.  

iv). The improvement procedure: The improvement procedure has been modified in that 

at every iteration the worst design is reflected through the centroid of the remaining 

designs in the design space to a new point. Then, when this new point has been optimally 

sized, its objective function is evaluated and compared with that of worst design in the 

complex. If the new point is less, it is accepted as a design improvement and termination 

criteria are checked; if greater, instead of continuously halving , it is halved only thrice 

and then centroid is considered as a candidate for improvement. If centroid is still greater 

than the worst, then a new point is located at the mid point of a line joining centroid to 

the best point in the complex. If the objective function is still greater than the worst, then 

the worst point is replaced by the best design in the complex. 

v). Termination criteria: The procedure in 3 is repeated until a preset termination 

criterion is reached. The first termination criterion used in this study is based on the 

objective function values of all k  points in the complex. This convergence criterion is 

met if the ratio of the difference between the maximum objective function value and the 

minimum objective function value to maximum objective function value of the points in 

the complex is less than or equal to the value of    (a user defined variable) i.e. 

                                                   max min max( ) /f f f                   (5)     

The second criterion that is checked for the convergence of the solution is a 

measure of the design space spanned by the vertices of complex, 
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         Finally, a constraint is placed on the maximum number of iterations that may occur 

before terminating the optimization. The optimization process is terminated as soon as 

any of the termination criteria is satisfied. 
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3.3 Sizing of Members 

The design procedure used is an iterative technique, and commences with the smallest 

web and flange thicknesses of the members whose web depths and flange thicknesses 

have been established by the complex method. The program takes each load condition 

and calculates the deflections and forces. It determines the maximum axial force, shear 

force and bending moment for each member of the structure. After completing the final 

loading condition, it summarizes the condition of forces and deflections, by selecting 

their highest value from the loading conditions for each member. The cross-sectional 

design of the members is undertaken in the member design space. During this phase of 

calculations, the web depths and flange widths of the members are regarded as fixed, 

while their web and flange thicknesses are determined based on fully-stressed design. 

The design of the member is carried out in two phases. In the first phase the minimum 

thickness of webs for all members are determined in order to carry safely the induced 

shear forces under all load cases. At this stage, any symmetry of member design (if 

specified) is also taken into account before proceeding with the flange design. 

In the second phase, after the web dimensions have been completely determined 

for the entire structure, the flange thicknesses are calculated to resist the already 

determined bending moments and axial forces. It then considers each group of members 

and selects the maximum value for that group. The program substitutes the modified 

cross-sectional dimensions for the members, making the necessary alterations to the 

stiffness matrix, and modifies the loading vectors for the change in self weight. The 

analysis and design cycle is repeated until the program is unable to modify any group of 

members. This constitutes the final design for the structure whose web depths and flange 

thicknesses have been established by the modified complex method. 

 

4. Examples  

Two numerical examples are solved to demonstrate the versatility of the proposed 

procedure. The results of the examples were generated with a FORTRAN 77 computer 

program executed on a Pentium IV, 2.66 GHz laptop computer with 512 MB of RAM. 

The program is in three interacting modules, performs search for optimum, structural 

analysis and structural design. In the development of the optimization routine guidance is 

taken from Kuester and Mize [8], and Belegundu and Chandrupatla [2] in order to 

produce a hybrid version of the modified Complex method. In the development of the 

structural analysis routine, extensive modifications to the frame analysis programs given 

in Crawley and Dillon [4] are made to meet the special needs of this study. The structural 

design routine is developed by using the Third Edition of Load and Resistance Factor 

Design (LRFD) procedure from American Institute of Steel Construction (AISC). The 

decision-making and the computational assignments are carried out by a separate 

subroutine in each phase. It is only during the last phase that the provisions of the     

AISC-LRFD specification are invoked; thus letting the other two subroutines function 

independently. This feature is highly desirable, especially when the need for modification 

to the design code may arise in the future. However, different modules representing the 

provision of other commonly used design codes can be appended to the existing design 

routine with relative ease.  
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The material specified for all members is steel with yield stress of 36 ksi, modulus of 

elasticity 29,000 ksi and unit weight of 490 lb/ft
3
.  The implicit constraints are to meet the 

relevant provisions of AISC-LRFD stress specifications.   

 

 

4.1 Example 1:  One-Bay Two-Storey Frame 

Consider the one-bay two-storey frame shown in figure 1. The aim of this design exercise 

is to minimize the weight of the frame by selecting a set of cross-sectional dimensions for 

the members so that the structure can carry the externally applied loads while the member 

stress requirements as per AISC-LRFD specifications are satisfied. The figure 1 shows 

the geometry, typical cross-sections, member, node and member group numbering for the 

frame. The design variables bf, tf, hw and tw define the thickness and width of the 

member’s flange and web, respectively.  This six-member rigid joint plane frame has 

been used as an example by previous investigators using sizing variables only. The frame 

is subjected to two loading conditions shown in figure 1. Member 2 is linked with 

member 1, while member 4 is linked with member 3, in order to impose symmetry. The 

unbraced length of 15 ft and 10 ft are specified for the design of beams and columns, 

respectively. The results of the axial forces in the members, and the axial force capacity 

of the members are shown in figure 2. The bending moment curves for load cases, the 

bending moment envelope and the moment capacity curves are shown for comparison in 

figure 3. At the optimum design, the most critical constraints are formed by the 

interaction of the combined effects of the axial forces and bending moments. The 

interaction equation checks, in members 2, 4 and 5 for load case 2 reached their limiting 

value unity and are shown in figure 4. Furthermore, there is no violation of constraints 

that can be seen from figures 2, 3 and 4, in other members.  

The initial complex, randomly generated, consisted of sixteen designs, with frame weight 

ranging from 10398.12 lb to 14661.47 lb. The minimum design in the initial complex is 

28.08% heavier than that of the final design. Figure 5 depicts the maximum and 

minimum objective function values in the complex with successive iteration. It can be 

noted that the objective function is steadily decreasing, as one would expect from a 

minimization problem. The frame becomes 12.44%, 8.62%, 5.17% and .86% heavier than 

the final design at iterations 4, 26, 43 and 125 respectively. The objective function and 

design space convergence parameters for every iteration are plotted in figure 6. 

After 296 iterations, the complex improvement procedure was stopped by the termination 

criteria. The optimal weight obtained based on AISC-LRFD specifications for this 

problem is 8117.77 lb. Results of the final design are compared to the design reported by 

Reinschmid and coworkers [16], Arora and coworkers [1], and Haque [7]. They reported 

optimal weights of 8810 lb, 8292 lb and 8656 lb, respectively. All of these three studies 

are based on the AISC-ASD specifications. It is, therefore not possible to strictly 

compare the results of the present study with either of them. However, the proximity of 

the optimal weights in the four studies is worth noticing.  
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Figure 5  History of max/min weight of structure in the complex 

 

 
Figure 6  History of convergence criteria 
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4.2 Example 2:  Three-Bay Four-Storey Rigid Joint Frame 

A three-bay, four-storey steel rigid joint frame shown in figure 7 is used to test the 

performance of the developed algorithm. The design optimization problem is to find the 

cross-sectional dimensions of all the members such as to minimize the weight of the steel 

frame structure. In addition to the implicit constraints, the flange width and web depths of 

the members are required to lie within the intervals 4 in. – 18 in., and 4 in. – 30 in., 

respectively. The unbraced length of 12 ft is specified for the design of beams and 

columns. Conforming to the usual design practice, all beams and columns are specified to 

have the same flange width, bf and the structure has to be symmetrical about the vertical 

centerline. The design involves five member fabrication groups i.e., four column groups 

and one beam group. The skeletal geometry of the structure and the load cases for this 

problem are shown in figure 7. This figure 7 also shows the member and node numbers, 

and also the member grouping numbers to which they belong to. For simplicity, a 

uniform member web depth of 28 in. and flange width of 16 in. is selected for all 

members in the initial design.   

The initial design has a total weight of 58.91 kip. The structure weight ranges from   

46.66 kip to 81.71 kip in the initial complex. It is interesting to note that the weight of the 

best design in the initial complex is about 7% heavier than the final design. It takes      

117 iterations to obtain the optimum weight of 43.75 kip for this problem. In figure 8, the 

axial forces for applied load cases and axial force capacity of the members are shown. 

The bending moment for the two load cases, as well as the moment envelope and the 

moment capacity curves are shown in figure 9. The interaction equation checks i.e. (the 

interaction of the combined effects of axial and bending stresses) form the most critical 

constraints and are shown in figure 10. It is evident from figure 10 that the stresses in 

members 2, 4, 10, 13 and 17 are at their limiting values and thus govern the designs of 

their respective groups. The design history of the maximum and minimum weight of the 

structure in complex versus iteration is given in figure 11, which shows that the structure 

design converges to its optimum smoothly. The histories of the design variables and 

normalized objective function/design space are shown in figures 12 and figure 13 

respectively. 
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Figure 11  History of max/min weight of structure in the complex  
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Figure 12  History of cross-sectional design variables  
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Figure 13  History of convergence criteria  

 

 

 

5.  Summary and Conclusion 

 In this study, a direct-search optimization algorithm based on the Complex 

Method with appropriate modifications is used in conjunction with the fully-stressed 

design for moment-resisting plane frame problems utilizing member sizing design 

parameters subject to strength considerations. A sequence of increasingly better designs 

can be achieved quite effectively by decomposing the design space into two subspaces. 

An important feature of this resolution is that the design requirements can be easily 

accommodated during the latter phase of sub optimization. 

The modified Complex Method is able to search the design space of a given model 

and is an effective tool in locating the optimal design of the structure. It does require the 

generation of an initial complex of feasible points that are spread out throughout the 

design space and tends to move in the direction of improvements in the various parts of 

the design space. This feature provides the potential for locating global optimum. The 

improvement in function value is very rapid in the initial 10-20 iterations after the initial 

feasible complex is established. It is simple to formulate the problem generally in a 

manner suitable for Box Complex method. It becomes very easy to apply the method 

when there are more than a few constraints in the problem. Multiple loading conditions 

can be accommodated easily by this method without significantly increasingly the 

computational effort. 

 This procedure offers the designer the ability to search more of the design space 

with a minimal amount of effort, and the ability to optimize complicated models, for 
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which the gradients would be time consuming, if not impossible to calculate. The 

designer can examine the many different optimum design states and can set some 

additional goals or constraints. If for some reason it is not possible to use optimum 

design, one of the slightly heavier designs found could then be selected. 

 Additional work can further improve the efficiency and effectiveness of the 

approach, by attempting to evaluate the effects of changing the number of points in the 

complex and reflection factor ( ). For the test problems presented in this dissertation, 

there were 2N points in the complex and    was 1.3 (suggested by Box [3]). The user 

can specify any value of the reflection factor and specify the number of points to be used 

(except that there can not be less than 2 points). The amount of time to run and the 

amount of the design space searched is dependent on these variables. 

 This work can be extended with some effort to include three-dimensional space 

frames by simply modifying the analysis algorithm. Similarly, other design codes may be 

incorporated by appropriate changes to the program. Although the criterion for optimality 

in the present work is weight of the structures, the method can be applied to a cost 

criterion very easily by an appropriate change in the objective function. Such a change 

would not affect the already nonlinear nature of the problem nor the basic procedure. It is 

simple to incorporate deflection constraints as well since the deflection of all joints is 

available at each analysis. This adds to only the number of total constraints but does not 

need any change in the procedure. It may, however, increase the computations to arrive at 

the solution. 
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